

Criteri di progettazione

Design criteria

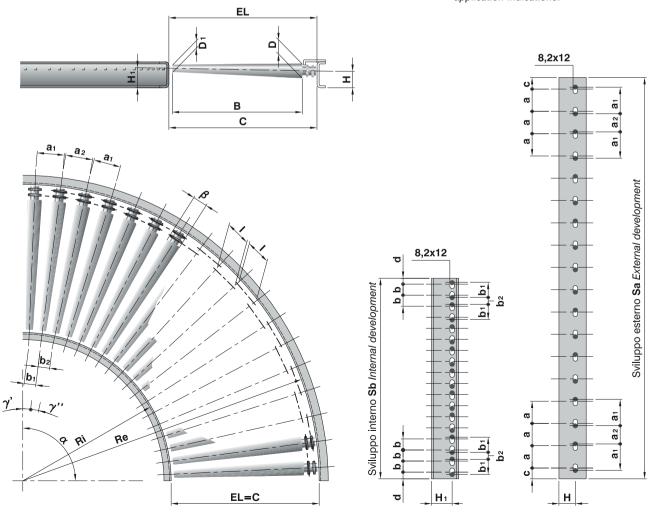
CRITERI PER LA COSTRUZIONE DELLE CURVE COMANDATE CON CATENA

Gli schemi e le tabelle di seguito riportati indicano il corretto posizionamento dei rulli e la costruzione delle spalle per le curve a rulli conici comandati con catena, presentati da pag 196 a pag 201.

Il passo dei rulli "l" è quello consigliato, ma può essere diverso, ricordando di non superare il valore di " γ max".

Si consiglia di impiegare spalle con asole per avere un interasse costante "a" e "b", diversamente è possibile prevedere dei fori ma curando la sequenza secondo "a₁, a₂," e "b₁, b₂".

Il numero dei rulli e lo sviluppo delle spalle "Sa" e "Sb" valgono solo per valori di "l" e per α =90°. Per altri criteri di progettazione a carattere generale vedere pagina 52 nel capitolo dedicato alle indicazioni di impiego.


CONSTRUCTION CRITERIA FOR CHAIN DRIVEN CURVES

The following drawings and tables indicate the correct roller positioning and the side frame construction for curves with chain driven tapered rollers, presented from page 196 to page 201.

The roller pitch "I" is the one recommended, but can differ, considering that the max "\gamma" value must not be exceeded.

We recommend to use side frames with slotted holes in order to have constant "a" and "b" pitches, in case of normal holes the sequence "a₁, a₂," and "b₁ and b₂" should be observed. The roller number and the side frame development "Sa" and "Sb" are valid only for "l" values and for α =90°.

For other general design criteria please refer to page 52 in the chapter dedicated to the application indications.

Rulli per curve Rollers for curves

Tipo / Type							KRO	/SM						
β°	3,6°													
y max	5°													
Ri	845	795	845	795	845	795	845	795	845	795	845	795	845	795
С	312	362	412	462	512	562	612	662	712	762	812	862	912	962
Re	1157	1157	1257	1257	1357	1357	1457	1457	1557	1557	1657	1657	1757	1757
I corda- <i>chord</i>	88,9	88,9	88,9	88,9	101,6	101,6	114,3	114,3	114,3	114,3	127,0	127,0	139,7	139,7
y'	4,55°	4,55°	4,18°	4,18°	4,42°	4,42°	4,65°	4,65°	4,32°	4,32°	4,50°	4,50°	4,67°	4,67°
y"	4,47°	4,47°	4,10°	4,10°	4,33°	4,33°	4,55°	4,55°	4,25°	4,25°	4,43°	4,43°	4,60°	4,60°
a arco - <i>arc</i>	91,1	91,1	90,9	90,9	103,7	103,7	116,6	116,5	116,4	116,4	129,2	129,2	142,0	142,0
a ₁ arco - arc	92,0	92,0	91,7	91,7	104,6	104,6	117,5	117,4	117,3	117,3	130,1	130,1	142,9	142,9
a ₂ arco - arc	90,2	90,2	90,1	90,1	102,9	102,9	115,7	115,7	115,6	115,6	128,4	128,4	141,1	141,1
c arco - arc	42,6	42,6	32,0	32,0	27,7	27,6	36,3	36,3	58,1	58,1	73,2	73,2	30,1	30,1
b arco - arc	66,5	62,6	61,1	57,5	64,6	60,8	67,6	63,6	63,2	59,4	65,9	62,0	68,3	64,2
b ₁ arco - arc	67,2	63,2	61,7	58,0	65,1	61,3	68,1	64,1	63,6	59,8	66,3	62,4	68,7	64,6
b ₂ arco - arc	65,9	62,0	60,6	57,0	64,1	60,3	67,1	63,1	62,7	59,0	65,4	61,6	67,8	63,2
d arco - arc	31,1	29,2	21,5	20,2	17,2	16,2	21,0	19,8	31,5	29,7	37,3	35,1	14,5	13,6
H ₁ - H	9,7	11,3	12,9	14,4	16,1	17,7	19,3	20,9	22,5	24,1	25,7	27,3	28,9	30,5
α	90°													
Sa sviluppo - development	1817	1817	1974	1974	2131	2131	2289	2289	2446	2446	2603	2603	2760	2760
Sb sviluppo - development	1327	1249	1327	1249	1327	1249	1327	1249	1327	1249	1327	1249	1327	1249
N. rulli - rollers	20	20	22	22	21	21	20	20	21	21	20	20	20	20

Tipo / Type					KRM/S2				
β°	2,7°								
y max	5°								
Ri	675								
С	300	400	450	500	600	700	800	900	1000
Re	975	1075	1125	1175	1275	1375	1475	1575	1675
I corda - chord	76,2	88,9	88,9	88,9	101,6	101,6	114,3	114,3	127,0
y'	4,65°	4,92°	4,68°	4,47°	4,70°	4,35°	4,55°	4,27°	4,45°
y"	4,55°	4,80°	4,58°	4,40°	4,62°	4,28°	4,48°	4,20°	4,38°
a arco - <i>arc</i>	78,4	91,2	91,1	91,0	103,8	103,7	116,5	116,3	129,1
a ₁ arco - arc	79,3	92,2	92,0	91,9	104,7	104,5	117,4	117,1	130,0
a ₂ arco - arc	77,5	90,3	90,2	90,1	102,9	102,8	115,6	115,5	128,3
c arco - arc	20,7	22,9	63,2	57,8	66,4	42,9	51,5	73,3	88,4
b arco - arc	54,2	57,3	54,6	52,3	54,9	50,9	53,3	49,8	52,0
b ₁ arco - arc	54,9	57,9	55,2	52,8	55,4	51,3	53,7	50,2	52,4
b ₂ arco - arc	53,6	56,7	54,1	51,8	54,5	50,4	52,9	49,5	51,7
d arco - arc	14,3	14,3	37,9	33,2	35,1	21,0	23,6	31,4	35,6
H ₁ - H	7,0	9,4	10,5	11,8	14,1	16,5	18,8	21,2	23,3
α	90°								
Sa sviluppo - development	1531,5	1688,6	1767,1	1845,7	2002,8	2159,8	2316,9	2474,0	2631,0
Sb sviluppo - development	1060,2	1060,2	1060,2	1060,2	1060,2	1060,2	1060,2	1060,2	1060,2
N. rulli - rollers	20	19	19	20	19	21	20	21	20

Tipo / Type			KRI	M/S3		
β°	2,92	2,32°	2,64°	2,10°	2,42°	1,92°
y max	5°					
Ri	1028	1541	1136	1703	1244	1864
С	1050	1050	1150	1150	1250	1250
Re	2078	2591	2286	2853	2494	3114
l corda - <i>chord</i>	158,8	190,5	174,6	222,3	190,5	238,1
y'	4,48°	4,29°	4,47°	4,54°	4,46°	4,45°
y"	4,43°	4,25°	4,42°	4,50°	4,42°	4,41°
a arco - <i>arc</i>	161,4	193,1	177,3	225,0	193,2	240,8
a ₁ arco - <i>arc</i>	162,4	194,0	178,3	226,0	194,1	241,8
a ₂ arco - <i>arc</i>	160,5	192,2	176,4	224,1	192,3	239,9
c arco - <i>arc</i>	98,4	104,3	111,0	215,6	123,6	158,1
b arco - <i>arc</i>	79,9	114,9	88,1	134,3	96,4	144,2
b ₁ arco - <i>arc</i>	80,3	115,4	88,6	134,9	96,8	144,7
b ₂ arco - <i>arc</i>	79,4	114,3	87,7	133,7	95,9	143,6
d arco - <i>arc</i>	48,3	61,4	54,7	128	61,2	93,9
H ₁ - H	26,7	21,3	26,5	21,1	26,3	21,0
α	90°					
Sa sviluppo - development	3264	4071	3591	4481	3918	4892
Sb sviluppo - development	1614	2420	1784	2674	1953	2927
N. rulli - rollers	20	21	20	19	20	20

Nel presente catalogo facciamo uso delle unità di misura delle grandezze secondo il SISTEMA INTERNAZIONALE DELLE UNITÀ DI MISURA «SI» e dei loro multipli e sottomultipli. Nella seguente tabella riportiamo, per maggior comodità, l'eventuale corrispondenza delle unità di misura «SI» da noi usate con l'oggi superato Sistema Tecnico e con il Sistema Anglosassone in uso in altri Paesi.

004110		01						101.001.5	2015
GRANDEZZA	nama	SI simbolo	equivalente	nome	TECNICO	conversione	nome	NGLOSAS: simbolo	SONE conversione
Lorente	nome		equivalente			Conversione			
Lunghezza	metro	m	4/4000	metro	m		piede	ft . "	0,3048 m
_	millimetro	mm	1/1000 m				pollice	in - "	25,4 mm
Tempo	secondo	S .		secondo	S		secondo	sec	
	minuto	min	60 s						
	ora	h	3600 s						
	giorno	d	86400 s						
Forza	newton	N		kilogrammo -	kgf – kp	9,80665 N	libbra (f)	lb(f)	4,448222 N
	decanewton	daN	10N	forza					0,4535924 K
Temperatura	grado Celsius	°C		grado		°F≅	grado	°F	°C≅ ^{°F-32}
Celsius				Celsius		(°C+17.78)x1,8	Fahrenheit		1,8
Angolo piano	radiante	rad		radiante	rad		radiante	rad	
	angolo giro		2π rad						
	grado sessagesimale	0	π/180 rad						
	minuto d'angolo	4	π/10800 rad						
	secondo d'angolo	"	π/648000 rad						
Velocità		m/s			m/s			ft/sec	0,3048 m/s
		m/min	1/60 m/s						
Velocità angolare		rad/s			rad/s			rad/sec	
	giri al minuto	giri/min	120 π rad/s				revolutions	rev/min	
							per minute	R.P.M.	
Momento		N⋅m			kgf⋅m	9,80665 N·m	libbre pollice	lb∙in	0,113Nm
o Coppia		daN⋅m	10 N·m						
Potenza (*)	watt	W		cavallo	CV	735,49875W	horsepower	H.P.	745,6999 W
	Kilowatt	kW	1000 W	vapore					
Intensità di	ampere	A			Α			Α	
corrente elettrica									
Tensione elettrica	volt	V			V			V	
Frequenza	hertz	Hz			Hz			Hz	
Tensione	pascal	Pa			Kgf/mm²	9806650 Pa	pounds per	psi	6894,757 Pa
e pressione	megapascal	MPa	1000000 Pa		Kgf/mm²	9,80665 MPa	square inch		, , ,

^(*) Le unità di potenza sono così derivate: $1W = 1 \text{ N} \cdot \text{m/s}$; $1 \text{ CV} = 75 \text{ Kgf} \cdot \text{m/s}$; $1 \text{ H.P.} = 550 \text{ Ib} \cdot \text{ft/sec}$.

Indicazione di impiego e criteri di progettazione

Application indications and design criteria

In the present catalog the measurement units of the international system «SI», their multiples and submultiples are used.

In the following table comparisons between the «SI», the obsolete Technical System and the British System are listed.

MEASUREMENT		SI			TECHNICA	4 <i>L</i>		BRITISI	Н
	name	symbol	equivalence	name	symbol	conversion	name	symbol	conversion
Length	meter	m		meter	m		foot	ft	0,3048 m
	millimeter	mm	1/1000 m				inch	in - "	25,4 mm
Time	second	s		second	S		second	sec	
	minute	min	60 s						
	hour	h	3600 s						
	day	d	86400 s						
Force	newton	Ν		kilogramforce	kgf – kp	9,80665 N	pound (f)	Ib (f)	4,448222 N
	decanewton	daN	10 N						0,4535924
Temperature	degree Celsius	°C		degree		°F≅	degree	°F	$C \cong \frac{{}^{\circ}F\text{-}32}{1.8}$
Celsius				Celsius		(°C+17.78)x1,8	Fahrenheit		1,8
Plane angle	radian	rad		radian	rad		radian	rad	
	round angle		2π rad						
	sexagesimal minute	0	π/180 rad						
	angular minute	•	π/10800 rad						
	angular second	"	π/648000 rad						
Speed		m/s			m/s			ft/sec	0,3048 m/s
		m/min	1/60 m/s						
Angular speed		rad/s			rad/s			rad/sec	
	revolutions	giri/min	120 π rad/s				revolutions	rev/min	
	per minute						per minute	R.P.M.	
Moment		N·m			kgf∙m	9,80665 N·m	pounds inch	Ib∙in	0,113Nm
or Torque		daN⋅m	10 N·m						
Power (*)	watt	W		cavallo vapore	CV	735,49875W	horsepower	H.P.	745,6999 W
	Kilowatt	kW	1000 W						
Electric current	ampere	Α			Α			Α	
Voltage	volt	V			V			V	
Frequency	hertz	Hz			Hz			Hz	
Tension	pascal	Ра			kgf/mm²	9806650 Pa	pounds per	psi	6894,757 Pa
and Pressure	megapascal	Мра	1000000 Pa		kgf/mm²	9,80665 MPa	square inch		

^(*) Power units are derived as follows: 1W = 1 N-m/s; 1 CV = 75 Kgf-m/s; 1 H.P. = 550 lb-ft/sec.

RULLI CONICI COMANDATI IN ACCIAIO P2C

I rulli conici di questa serie sono stati progettati per realizzare curve comandate con ingombri ridotti e l'ottima esecuzione garantisce un regolare avanzamento dei colli.

Sono completamente in acciaio con mantello zincato (esec. J), ricavati dalla serie "GL", della quale hanno le caratteristiche costruttive, (pag. 74), ma dotati di cuscinetto radiale rigido 6201-Z dal lato pignone.

L'asse è in esecuzione standard con fori filettati per il fissaggio con viti, consentendo un facile montaggio e l'irrigidimento della struttura.

È importante curare il posizionamento dei rulli e la foratura delle spalle secondo gli schemi presentati a pag 202-203.

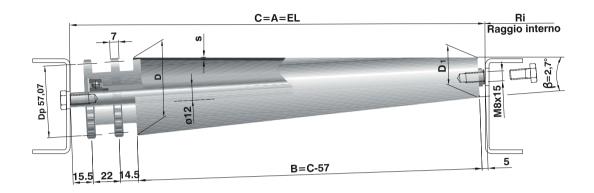
Consigliamo di rispettare le lunghezze standard, mentre per esecuzioni e lunghezze diverse da quelle presentate nella tabella successiva, si dovrà verificare se compatibili e in quantitativi giustificabili.

Esempio di codice di ordinazione KRM/S2 12R 67J 800 P2C

Tutte le quote sono espresse in mm.

STEEL DRIVEN TAPERED ROLLERS P2C

The tapered rollers of this series have been designed to obtain driven curves with reduced dimensions and the exceptional execution guarantees the regular flow of the load.


They are completely in steel with zinc-plated shell (J design), obtained from the series "GL", of which they have the same construction characteristics (page 74), but equipped with rigid radial ball bearing 6201-Z, pinion-side.

The standard shaft execution is internally threaded for screw assembly, allowing an easy installation and making the structure rigid. It is important to give particular attention to the roller positioning and to the shoulder boring as per the drawings at pages 202-203. While designing the system we recommend keeping the standard lengths, whereas for different designs and lengths compatibility and justifiable quantities should be verified.

Ordering code example KRM/S2 12R 67J 800 P2C

All dimensions are in mm.

Tipo / Type	Codice di Asse d d(ø)	ordinazion / Shaft esec.		ring codes I Tube esec.	Lungh. / Length C	D (ø)	D1 (Ø)	Ri	s	р	Z	Dp	Peso totale Total weight daN
	u(b)	0300.	44	0300.	300	43,4							1,41
			48		400 (*)	48,1							1,48
			51		450 (*)	50,5			1,5				1,66
			53		500 (*)	53,0							1,81
KRM/S2	12	R	58	J	600 (*)	57,7	32	675		1/2"	14	57,07	2,13
			62		700 (*)	62,4							3,20
			67		800	67,1			2				3,67
			72		900	71,8							4,15
			76		1000	76,0							4,63

(*) Rulli a stock. - Stock rollers.

Legenda delle sigle di esecuzione

R = asse forato e filettato

J = tubo con zincatura elettrolitica

CAPACITÀ DI CARICO "PC"

La capacità di carico di questi rulli è uguale per tutte le lunghezze, variabile con la velocità di rotazione (velocità angolare), calcolata per una durata teorica di progetto dei cuscinetti di 10.000 h.

Si consideri sempre: $Pc \ge P$

dove P è il carico effettivo sul rullo.

Si consiglia di non superare la velocità di 0,5 m/s, poiché la trasmissione diventerebbe particolarmente rumorosa.

Execution codes caption

R = drilled and threaded shaft

J = zinc-plated tube

LOAD CAPACITY "PC"

The load capacity of these rollers is the same for all the lengths, varying with the rotation speed (angular speed), calculated for a theoretical bearing life of 10,000 hours.

Always consider: **Pc** ≥ **P**

where P is the effective load on the roller. We suggest not exceeding the speed of 0,5 m/s as the transmission would become particularly noisy.

				giri	/min - rev/	min'			
Tipo / Type	10	25	50	75	100	150	200	250	300
					daN				
KRM/S2	122	77	54	44	38	31	27	24	22

RULLI CONICI COMANDATI PESANTI PER Trasporto pallet

I rulli conici di questa serie sono progettati per realizzare curve comandate e per il trasporto di carichi pesanti, in particolar modo pallet, con avanzamento regolare.

Questi rulli sono ricavati dalla serie PS con asse d.20 e cuscinetti radiali rigidi 6204. Sono completamente in acciaio con mantello zincato (esec. J) e l'ottima esecuzione assicura un avanzamento regolare dei colli.

L'asse è in esecuzione standard con fori filettati (esec. R) per il fissaggio con viti, che consente un facile montaggio e l'irrigidimento della struttura. É possibile produrre rulli con conicità per raggi di curvatura diversi dallo standard ed ottenere anche configurazioni personalizzate su richiesta, compatibilmente con i quantitativi richiesti.

Nell'indicare il codice di ordinazione vanno riportati il tipo, il diametro e l'esecuzione asse, il codice e l'esecuzione tubo, la lunghezza "C".

Esempio di codice di ordinazione: KRM/S3 20R 153J 1050

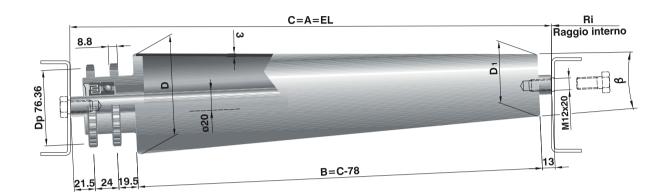
Tutte le quote sono in mm.

HEAVY DUTY DRIVEN TAPERED ROLLERS FOR PALLETS TRANSPORT

The tapered rollers of this series are designed to obtain driven curves and transport of heavy loads, especially pallets, handled with a regular flow.

The rollers are originated from PS series with shaft d.20 and rigid radial ball bearings 6204. They are completely in steel with zinc-plated shell (J exec.) and their perfect execution ensures a regular flow of the pallets.

The standard shaft execution is internally threaded for screw assembly, allowing an easy installation and making the structure rigid (Rexec.).


It is possible to manufacture special tapered rollers for curves rays different from standard and lengths, and according to clients' special requirements depending from the required quantities.

When indicating the ordering code please specify the type, the shaft diameter and execution, the tube code and execution, the "C" length.

Ordering code example: KRM/S3 20R 153J 1050

All dimensions are in mm.

Tipo / Type		ordinazio / Shaft esec.	ne / Order Tubo / cod.	ring codes / Tube esec.	Lungh. / Length C	D (ø)	D ₁ (ø)	Ri	β	р	z	Dp	Peso totale Total weight daN
			153		1050		53	1028	2,92°				8,40
			163		1050		63	1541	2,32°				8,40
KRM/S3	20	R	153		1150	102	53	1136	2,64°	5/8"	15	76,36	9,02
KHIW/53	20	n	163	J	1150	102	63	1703	2,10°	3/8	15	70,30	9,02
			153		1250		53	1244	2,42°				9,45
			163		1250		63	1864	1,92°				9,45

Legenda delle sigle di esecuzione

R = asse forato e filettato

J = tubo con zincatura elettrolitica

Execution codes caption

R = drilled and threaded shaft

J = zinc-plated tube

CAPACITÀ DI CARICO "PC"

Per carichi elevati si consiglia di non superare velocità di 0,30 m/s, in quanto risulterebbe difficile controllare l'avanzamento dei pallet; inoltre la trasmissione in curva diventerebbe particolarmente rumorosa.

I valori della portata variano con la velocità di rotazione indipendentemente dalle lunghezze.

LOAD CAPACITY "PC"

For heavy loads a speed exceeding 0.30 m/s is not suggested for the pallet correct flow control, moreover a chain loop drive in a bend becomes very noisy.

The load values vary with the rotation speed not depending from the lengths.

		į	jiri/min - rev/min		
Velocità / Speed	10	25	50	75	100
			daN		'
Portata / Load capacity	550	442	351	306	278

RULLI CONICI COMANDATI P2C CON CORPO ESTERNO IN POLIPROPILENE

Sono ottenuti mediante il calettamento di manicotti nervati troncoconici, in Polipropilene di colore grigio, sul rullo base serie 135/S3 P2C con tubo diametro 50 zincato sendzimir esec. "Z", pignone doppio in Poliammide e cuscinetti radiali rigidi 6002 (pag 158).

Ideali per realizzare curve con avanzamento controllato dei colli, sono particolarmente robusti, consentono una trasmissione silenziosa anche con velocità elevate e permettono di combinarsi con vari tipi di rulli comandati cilindrici. L'asse forato e filettato, completo di viti per il fissaggio, consente un facile montaggio e l'irrigidimento della struttura.

L'impiego è normalmente consentito con temperatura da 0° C a +50° C, in ambienti normali, umidi, polverosi ed alimentari.

Sono previsti con lunghezza "B" multipla di 50 mm, solo nei valori come indicato nella tabella successiva.

É importante curare il posizionamento dei rulli e la foratura delle spalle secondo gli schemi presentati alle pagine 202-203 per assicurare un regolare avanzamento dei colli e la corretta tensione degli anelli di catena.

Esempio di codice di ordinazione:

KRO/SM 14R 91ZK 662 (P2C)

Le notizie sulle materie plastiche impiegate sono riportate nell'introduzione.

Tutte le quote sono espresse in mm.

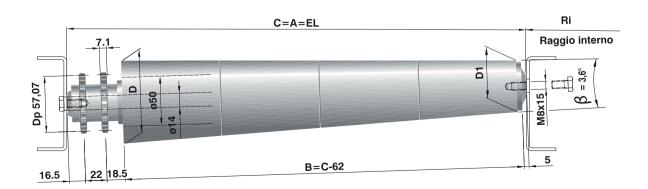
DRIVEN TAPERED ROLLERS P2C WITH POLYPROPYLENE EXTERNAL BODY

They are obtained by assembling ribbed truncated grey Polypropylene cone sleeves on the base roller series 135/S3 P2C with diameter 50 hot dip zinc tube sendzimir ("Z" execution) and Polyamide double pinion (page 158).

They are ideal for curves with units controlled handling and they are particularly strong, they allow noiseless transmission even at high speeds and can combine with different cylindrical driven rollers.

The shaft is internally threaded, complete with screws for assembly and allows an easy installation and a rigid structure.

Temperature applications range from 0° C to +50° C for normal, damp, dusty and food environments.


They are supplied with B lengths multiple of 50 mm, only for the values shown in the following table.

It is important to give special attention to the positioning of the rollers and to the boring of the side frames as per the drawings at pages 202-203 to assure a regular load flow and the correct tensioning of the chain loops.

Ordering code example: KRO/SM 14R 91ZK 662 (P2C)

The information on the plastic materials employed are listed in the introduction section.

All dimensions are in mm.

Rulli per curve Rollers for curves

Tipo / Type	Codice di Asse	ordinazio / Shaft esec.		ing codes Tube esec.	Lungh. / Length C	DØ	D ₁ Ø	Ri	р	Z	Dp	Peso totale <i>Total weight</i> daN
	u(ø)	6366.	71	6366.	312		56,4	845				1,16
			72		362	72,0	53,4	795				1,32
			77		412		56,4	845				1,53
			78		462 (*)	78,5	53,4	795				1,69
			84		512	05.0	56,4	845				1,91
			85	85,0 85 562 (*)	85,0	53,4	795				2,07	
KRO/SM	14	R	90	ZK	612	91,3	56,4	845	1/2"	14	57,07	2,31
KNO/SIVI	14	П	91	ZΝ	662 (*)	91,3	53,4	795	1/2	14	57,07	2,47
			96		712	97,6	56,4	845				2,72
			97		762 (*)	97,0	53,4	795				2,89
			103		812	104,0	56,4	845				3,16
			104		862	104,0	53,4	795				3,33
			109		912	110,3	56,4	845				3,62
			110		962	110,0	53,4	795				3,78

(*) Rulli a stock - stock rollers

Legenda delle sigle di esecuzione

- R = asse forato e filettato
- **Z** = tubo con zincatura a caldo (sendzimir)
- K = manicotti conici in polipropilene

Note:

- a richiesta questi rulli possono essere forniti:
- con cuscinetti in acciaio inox
- con asse e tubo interno inox AISI 304
- con pignone in acciaio tipo KRO/SC (rullo base 135/S5)
- frizionati tipo KRO/SF (rullo base 138/S3)
- frizionati con pignone in acciaio tipo KRO/SA (rullo base

CAPACITÀ DI CARICO "Pc"= 50 daN

La capacità di carico di questi rulli è uguale per tutte le lunghezze e con velocità di rotazione fino a 300 giri/min.

COMPONENTI SCIOLTI PIGNONE AD INNESTO IN ACCIAIO

É prevista la possibilità di fornire un pignone in acciaio ad innesto in sostituzione e perfettamente intercambiabile con il pignone in Poliammide, da applicare per collegamenti diretti al motoriduttore.

Codice: SF PI.3538-00055

Descrizione: Pignone 135 P2C 1/2" Z14 140221463 in acciaio ad innesto.

- Executions codes caption **R** = drilled and threaded shaft
- **Z** = hot dip zinc tube (sendzimir)
- **K** = tapered polypropylene sleeves

Notes:

the rollers can also be supplied under request:

- with stainless steel ball bearings
- with stainless steel AISI 304 shaft and internal tube
- with steel pinion type KRO/SC (base roller 135/S5)
- friction type KRO/SF (base roller 138/S3)
- friction with steel pinion type KRO/SA (base roller 138/S5)

LOAD CAPACITY "Pc" = 50 daN

The load capacity of these rollers is the same for all the lengths and with a rotation speed up to 300 rev/min.

LOOSE COMPONENTS COUPLING STEEL PINIONS

It is possible to supply coupling steel pinions instead of Polyammide pinions, to be assembled for direct junctions with the gearbox.

Ordering code: SF_PI.3538-00055

Description: Coupling steel pinion sprocket 135 P2C ½" Z14 140221463.

