

2017.10

Programma di produzione

Il processo di rullatura.

La filettatura rullata è un processo di lavorazione che avviene mediante formatura a freddo della superficie esterna di parti tonde. Il filetto viene creato mediante utensili che girano per effetto "radiale-dinamico" esercitato sulla vite stessa. I due utensili rullatori penetrano nella superficie esterna della materia prima deformandola progressivamente fino al raggiungimento delle forme e dimensioni volute.

I vantaggi del processo di filettatura rullata sono :

- aumento della resistenza del dente filetto:
- eccellenti valori di rugosità sul fianco filetto e sul raggio di base;
- mancanza di interruzione dell'andamento delle fibre della materia prima a differenza della filettatura asportata o fresata;
- · ridotta sensibilità all'intaglio

Le viti di manovra vengono identificate con filettatura conforme allo standard Trapezio DIN 103 ISO 2901 - 2902 - 2903 - 2904, ed impiegate per azioni di regolazione-blocco o traslazione.

Nell'azione di **regolazione-blocco** l'accoppiata vite-madrevite è utilizzata principalmente per sostenere un carico (in trazione o compressione).

La conversione del moto rotatorio in lineare è occasionale e finalizzata solamente a regolare la distanza del carico. Il sistema offre garanzia di irreversibilità (non si innescano moti retrogradi).

Nell'azione di **traslazione** il sistema vite-madrevite è utilizzato per produrre uno spostamento convertendo un moto rotatorio in moto lineare. Risulta di estrema importanza la valutazione dell'efficienza e dei fenomeni di usura. Il sistema offre garanzia di irreversibilità (non si innescano moti retrogradi).

Le viti rullate sono prodotte in acciaio al carbonio (basso-alto), ad alta resistenza (8.8), inox.

Per ogni classe di materiale sono disponibili varianti per utilizzi differenti. Ogni gamma è supportata da versioni destre, sinistre, ad uno o due principi di filetto.

Le madreviti si distinguono fra madreviti a tutto materiale e modulari. Le differenti caratteristiche permettono di ottimizzare la scelta fra materiali, forme e predisposizioni per il fissaggio.

Il servizio CUSTOM offre la possibilità di lavorazione personalizzata per piccole serie dei terminali viti, soluzioni con filettatura asportata, lavorazione a disegno delle madreviti e personalizzazione dei giochi radiali.

Gli accessori comprendono lubrificanti speciali e adattatori per supporto

madreviti.

Alla distribuzione industriale viene proposta una vasta gamma di articoli standardizzati disponibili a magazzino in pronta consegna, unitamente ad un servizio back office di eccellenza.

Alla manifattura industriale vengono realizzate viti di manovra prodotte su disegno del cliente ed industrializzate con processi ad altissima effi cienza e qualità.

Le viti di comando presentano caratteristiche di geometria di filetto finalizzate alla massimizzazione del rendimento ed all'ottimizzazione dei valori di "P x V".

Sono comprese nel concetto di viti di comando le viti trapezoidali multi principio, le viti con profilo

di filetto speciale denominato Tondo ad uno o più principi, le viti a passo lungo. Le viti di comando sono indicate per movimentazioni veloci ad alto rendimento. Vengono abbinate a madreviti in materiali plastici o in bronzo.

Le viti di comando vengono prodotte su disegno del cliente ed industrializzate con processi ad altissima produttività.

Settori di applicazione :

- automazione;
- elettrotecnica;
- elettrodomestici;industria tessile e grafica;
- ingegneria edile;
- ingegneria meccanica;
- tecnica medicale;
- tecnica dei veicoli.

Viti di manovra Sintesi delle gamme

	Acciaio low carbon	RAT	
	Acciaio high carbon	RATHCP	CARBON
Viti rullate trapezoidali	Acciaio Inox 304	RIT304	
vici i dilace di apezoidani	Acciaio Inox 316	RIT316	inox
	ETG 100	RATH	tropezio HEAVY

			Cilindriche	Cilindriche XL	Flangiate	Flangiate XL	Quadre	Quadre preforate	Esagonali
	troperio	Acciaio	MAC	MACXL	MAF		MAQ	MAQF	MAE
	NUT	CuSn12	МВС	MBCXL	MBF	MBFXL	MBQ	MBQF	
		Lega di Rame	MLRC		MLRF	MLRFXL	MLRQ		
		Bronzo Alluminio			MBALF	MBALFXL			
	Tutto materiale	Acciaio Inox 303	MIC303						MIE303
	Tutto materiale	Acciaio Inox 304	MIC304						MIE304
		Poliammide PA6 + Olio	MPAIC				MPQ		
		Poliammide PA6 + Lubrificanti				MPA2XL			
		Poliammide PA6 + MoS2	MPA3C						
/iti		Poliacetale POM C	MPC		MPFXL				
Madreviti			Inserto filettato bronzo	Inserto filettato Poliacetale POM C	Inserto filettato Poliammide PA6 + olio	Inserto filettato Poliammide PA6 + Iubrificanti	Inserto filettato Poliammide PA6 + MoS2	Flangia acciaio	Flangia acciaio Inox
	GW412	Flangiata inserto filettato sostituibile acciaio	SWAP FAB	SWAP FAP	SWAP INPA	SWAP INPA2	SWAP INPA3		
	Modulari	Flangiata inserto filettato sostituibile acciaio Inox	SWAP FIB	SWAP FIP					
	SWOO	Cilindrica CuSn12 con flangia applicabile						MTNB	MTNBI
	T-NOSE	Cilindrica Lega di Rame con flangia applicabile						MTNLR	MTNLRI

<u>custom</u>	Viti	Lavorazione terminali viti Rivestimenti speciali sulle filettature Filettatura asportata Filettatura fresata
	Madreviti	Forme a disegno madreviti Gioco radiale personalizzato

Viti di manovra

Programma di vendita

Viti Rullate	Gamma MLRF (flangiate)37	SwapInB (bronzo)61
	Gamma MLRFXL (flangiate	SwapInP (poliacetale POM-C)62
Viti Rullate Trapezoidali in acciaio al	lunghezza maggiorata)38	SwapInA1 (PA6+olio)63
carbonio07	Gamma MLRQ (quadre)39	SwapInA2 (PA6+MoS2)64 SwapInA3 (PA6+lub.solidi)65
Gamma RAT08	Madreviti a tutto materiale in	,
(C20 I-2 principi)	bronzo alluminio40	T-Nose Nut con flangia in acciaio
Gamma RATHCP10		brunito66
(C45 di precisione 1-2 principi)	Gamma MBALF (flangiate)41	Gamma MTNB (bronzo)67
	Gamma MBALFXL (flangiate	Gamma MTNLR (lega rame)68
Viti Rullate Trapezoidali in acciaio	lunghezza maggiorata)42	, ,
alta resistenza12		
	Madreviti a tutto materiale in	Personalizzazioni69
Gamma RAT Heavy13	acciaio Inox43	 Lavorazione Terminali Viti
(8.8 I principio)		 Rivestimenti superficiali
	Gamma MIC303 (cilinidriche) 44	filettature
Viti Rullate Trapezoidali in acciaio	Gamma MIE303 (esagonali)45	Filettatura Asportata-Fresata
lnox14	Gamma MIC304 (cilinidriche) 46	Madreviti personalizzate
	Gamma MIE304 (esagonali)47	Gioco radiale personalizzato
Gamma RIT304 15	, ,	Rivestimenti superficiali
(Aisi 304 I-2 principi)	Madreviti a tutto materiale in	madreviti
Gamma RIT316	materali plastici48	
(Aisi 316)		Lavorazione Terminali Viti70
,	Poliammide PA6+olio	
Madreviti a tutto materiale	Gamma MPAIC (cilinidriche)49	
	Gamma MPQ (quadre)50	Accessori71
Madreviti a tutto materiale in	7 7	Lubrificanti viti di manovra72
acciaio automatico18	Poliammide PA6+lubrificanti solidi	Supporti adattatori per madreviti
	Gamma MPA2FXL (flangiate	flangiate73
Gamma MAC (cilinidriche) 19	lunghezza maggiorata)51	3
Gamma MACXL (clinidriche	3 33 /	
lunghezza maggiorata)21	Poliammide PA6+MoS2	
Gamma MAF (flangiate)22	Gamma MPA3C (cilinidriche)52	Informazioni tecniche
Gamma MAE (esagonali)23	Poliacetale POM-C	Scelta componenti74
Gamma MAQ (quadre)24	Gamma MPC (cilinidriche)53	Dimensionamento a carichi assiali
Gamma MAQF	, ,	di trazione e compressione77
(quadre preforate)26	Gamma MPCC (cilinidriche con	Dimensionamento alla velocità
,	sede chiavetta)54	critica80
Madreviti a tutto materiale in	Gamma MPFXL (flangiate	Dimensionamento ad usura82
bronzo GCuSn1227	lunghezza maggiorata)55	Rendimento, carico assiale, coppia,
	,	potenza86
Gamma MBC (cilinidriche)28	Madreviti modulari	Formulario88
Gamma MBF (flangiate)30		
Gamma MBFXL (flangiate	Swap56	
lunghezza maggiorata)32	Gamma FAB (flangiate acciaio-	
Gamma MBQ (quadre)33	bronzo)57	
	Gamma FAP (flangiate acciaio-	
Gamma MBQF	poliacetale POM-C)58	
(quadre preforate)34	Gamma FIP (flangiate inox-	
	poliacetale POM-C)59	
Madreviti a tutto materiale in	•	
lega di rame35	SwapIn (interni filettati per	
Gamma MLRC (cilinidriche) 36	madreviti Swap)60	

Viti in acciaio al carbonio

Caratteristiche costruttive e prestazionali

Viti di manovra rullate a profilo di filetto Trapezoidale. Gli azionamenti con viti di manovra rullate rappresentano una soluzione economica ed efficace per costruzioni nei settori del serraggio, del posizionamento e dell'avanzamento.

Impieghi consigliati

Gamma RAT

Vasto campo di impiego negli azionamenti finalizzati al serraggio od alla manovra di elevati carichi con ridotte velocità di avanzamento. La versione a due principi raddoppia la velocità di avanzamento e trova largo impiego negli azionamenti economici per i settori del posizionamento.

Gamma RAT High Carbon Precision (RATHCP)

Utilizzo negli azionamenti finalizzati al posizionamento ove è richiesta precisione e qualità. La versione a due principi raddoppia la velocità di avanzamento e trova impiego negli azionamenti per i settori del posizionamento.

Precisione di passo

La gamma RAT è realizzata in classe C8 (0,100mm/300 mm) mentre la gamma RATHCP in classe C7 (0,050mm/300 mm). Il controllo è effettuato "on process" mediante strumentazione digitale a garanzia del mantenimento dei valori prefissati.

Rettilineità

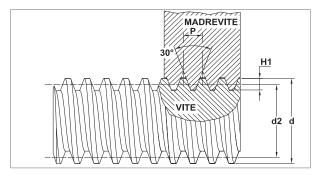
La rettilineità è controllata con procedure qualitative a garanzia del mantenimento dei valori prefissati.

Caratteristiche meccaniche materia prima

Acciaio al carbonio C20

Garantisce buoni risultati di durezza superficiale sul filetto e presenta ottima lavorabilità ad asportazione.

Acciaio al carbonio C45


Garantisce eccellenti risultati di durezza superficiale sul filetto e del nocciolo. Ottime caratteristiche di temprabilità.

Dati Tecnici	Gamme RAT - RATHCP
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7e
Numero di principi	1 - 2
Diametri disponibili:	
I principio	10 - 80 mm
2 principi	12 - 40 mm
Passi disponibili:	
l principio	3 - 10 mm
2 principi	6 - 14 mm
Senso di rotazione:	
I principio	destro e sinistro
2 principi	destro
Lunghezza max:	3000 mm - 6000 mm
Classe di Precisione ISO 3408-3 :	
I principio	RAT = C8 = 0,100 mm su 300 mm
	RATHCP = C7 = 0,050 mm su 300 mm
2 principi	RAT = C8 = 0,100 mm su 300 mm
Rettilineità:	
I principio	RAT = 0.10 - 0.50 mm su 300 mm
	RATHCP = 0,03 - 0,10 mm su 300 mm
2 principi	RAT = 0.10 - 0.50 mm su 300 mm
	RATHCP = 0,03 - 0,10 mm su 300 mm

Viti in acciaio al carbonio Gamma RAT

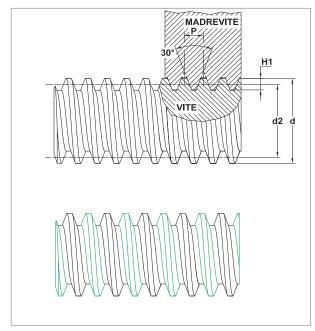
Caratteristiche Tecniche							
Materia prima	C22E 1.1151 Acciaio al carbonio C20						
Principi di filetto	1						
Classe di precisione	C8 = 0,100 mm su 300 mm						
Lunghezza massima	3000 mm fino al Tr l 8x04 6000 mm dal Tr 20x04						

	Codice	Filetto	Verso	(t	d	2	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza 10 ³	
												superficiale ly	mm³	
												[10 ⁴ mm ⁴]		
S	RATI003ID	Tr10x03	DX	9,764	10,000	8,191	8,415	0,5	6°24'	0,51	1,5	0,0057	0,02	0,45
S	RATI003IS	Tr10x03 LH	SX	9,764	10,000	8,191	8,415	0,5	6°24'	0,51	1,5	0,0057	0,02	0,45
S	RATI203ID	Tr12x03	DX	11,764	12,000	10,191	10,415	0,5	5°12'	0,46	1,5	0,02	0,047	0,65
S	RATI203IS	Tr12x03 LH	SX	11,764	12,000	10,191	10,415	0,5	5°12'	0,46	1,5	0,02	0,047	0,65
S	RATI404ID	Tr14x04	DX	13,700	14,000	11,640	11,905	0,5	6°03'	0,5	2	0,03	0,067	0,89
S	RATI404IS	Tr14X04 LH	SX	13,700	14,000	11,640	11,905	0,5	6°03'	0,5	2	0,03	0,067	0,89
S	RATI604ID	Tr16x04	DX	15,700	16,000	13,640	13,905	0,3	5°12'	0,46	2	0,068	0,124	1,2
S	RATI604IS	Tr16x04 LH	SX	15,700	16,000	13,640	13,905	0,3	5°12'	0,46	2	0,068	0,124	1,2
S	RATI804ID	Tr18x04	DX	17,700	18,000	15,640	15,905	0,3	4°33'	0,43	2	0,133	0,206	1,58
S	RAT18041S	Tr18x04 LH	SX	17,700	18,000	15,640	15,905	0,3	4°33'	0,43	2	0,133	0,206	1,58
S	RAT20041D	Tr20x04	DX	19,700	20,000	17,640	17,905	0,2	4°03'	0,4	2	0,238	0,318	2,01
S	RAT20041S	Tr20x04 LH	SX	19,700	20,000	17,640	17,905	0,2	4°03'	0,4	2	0,238	0,318	2,01
S	RAT22051D	Tr22x05	DX	21,665	22,000	19,114	19,394	0,2	4°40'	0,43	2,5	0,285	0,366	2,35
S	RAT22051S	Tr22x05 LH	SX	21,665	22,000	19,114	19,394	0,2	4°40'	0,43	2,5	0,285	0,366	2,35
S	RAT24051D	Tr24x05	DX	23,665	24,000	21,094	21,394	0,2	4°14'	0,41	2,5	0,465	0,526	3,1
S	RAT25051D	Tr25x05	DX	24,665	25,000	22,094	22,394	0,2	4°03'	0,4	2,5	0,53	0,61	3,1
S	RAT25051S	Tr25x05 LH	SX	24,665	25,000	22,094	22,394	0,2	4°03'	0,4	2,5	0,53	0,61	3,1
S	RAT28051D	Tr28x05	DX	27,665	28,000	25,094	25,394	0,1	3°34'	0,37	2,5	1,055	0,976	3,75
S	RAT28051S	Tr28x05 LH	SX	27,665	28,000	25,094	25,394	0,1	3°34'	0,37	2,5	1,055	0,976	3,75
S	RAT30061D	Tr30x06	DX	29,625	30,000	26,547	26,882	0,1	4°03'	0,4	3	1,135	1,03	4,52
S	RAT30061S	Tr30x06 LH	SX	29,625	30,000	26,547	26,882	0,1	4°03'	0,4	3	1,135	1,03	4,52
S	RAT32061D	Tr32x06	DX	31,625	32,000	24,463	25,000	0,1	3°45'	0,39	3	1,610	1,34	4,55
S	RAT35061D	Tr35x06	DX	34,625	35,000	31,547	31,882	0,1	3°25'	0,36	3	2,68	2,04	6,34
S	RAT35061S	Tr35x06 LH	SX	34,625	35,000	31,547	31,882	0,1	3°25'	0,36	3	2,68	2,04	6,34
S	RAT36061D	Tr36x06	DX	35,625	36,000	32,547	32,882	0,1	3°18'	0,36	3	2,67	2,13	6,71
S	RAT36061S	Tr36x06 LH	SX	35,625	36,000	32,547	32,882	0,1	3°18'	0,36	3	2,67	2,13	6,71
S	RAT4007ID	Tr40×07	DX	39,575	40,000	36,020	36,375	0,1	3°30'	0,37	3,5	4,25	2,79	8,21
S	RAT40071S	Tr40x07 LH	SX	39,575	40,000	36,020	36,375	0,1	3°30	0,37	3,5	4,25	2,79	8,21
S	RAT45081D	Tr45×08	DX	44,550	45,000	40,493	40,868	0,1	3°33'	0,35	4	7,32	4,21	10,35
S	RAT45081S	Tr45x08 LH	SX	44,550	45,000	40,493	40,868	0,1	3°33'	0,35	4	7,32	4,21	10,35
S	RAT50081D	Tr50x08	DX	49,550	50,000	45,468	45,868	0,1	3°10'	0,34	4	11,71	5,96	13,05
S	RAT50081S	Tr50x08 LH	SX	49,550	50,000	45,468	45,868	0,1	3°10	0,34	4	11,71	5,96	13,05
S	RAT55091D	Tr55x09	DX	54,500	55,000	49,935	50,360	0,1	3°03'	0,33	4,5	19,9	8,88	15,41
S	RAT60091D	Tr60×09	DX	59,500	60,000	54,935	55,360	0,2	2°57'	0,33	4,5	26,4	11	18,65
S	RAT60091S	Tr60x09 LH	SX	59,500	60,000	54,935	55,360	0,3	2°57'	0,33	4,5	26,4	11	18,65
S	RAT70101D	Tr70×10	DX	69,470	70,000	64,425	64,850	0,3	2°48'	0,32	5	51,8	18,2	26,05
S	RAT80101D	Tr80×10	DX	79,470	80,000	74,425	74,850	0,3	2°25'	0,29	5	98,9	29,5	34,7

⁽¹⁾ Angolo di spira del diametro medio

⁽²⁾ Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.


Stock disponibile a magazzino

R Disponibile su richiesta

Viti in acciaio al carbonio Gamma RAT 2 principi

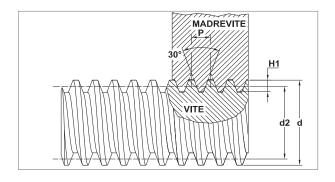
Caratteristiche Tecniche						
Materia prima	C22E 1.1151 Acciaio al carbonio C20					
Principi di filetto	2					
Classe di precisione	C8 = 0,100 mm su 300 mm					
Lunghezza massima	3000 mm					

	Codice	Filetto	Verso	(d	d	2	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza	
												superficiale ly	10 ³ mm ³	
												[10 ⁴ mm ⁴]		
S	RAT12062D	Tr12x06 (P3)	DX	11,764	12,000	10,164	10,415	0.5	10°21'	0.6	1.5	0.02	0.047	0.65
S	RAT14082D	Tr14x08 (P4)	DX	13,700	14,000	11,608	11,905	0.5	12°03'	0.6	2	0.03	0.067	0.89
S	RAT16082D	Tr16x08 (P4)	DX	15,700	16,000	13,608	13,905	0.3	10°21'	0.6	2	0.068	0.124	1.2
S	RAT18082D	Tr18x08 (P4)	DX	17,700	18,000	15,608	15,905	0.3	9°03'	0.58	2	0.133	0.206	1.58
S	RAT20082D	Tr20x08 (P4)	DX	19,700	20,000	17,608	17,905	0.2	8°03'	0.56	2	0.238	0.318	2.01
S	RAT22102D	Tr22×10 (P5)	DX	21,665	22,000	19,080	19,394	0.2	9°16'	0.58	2.5	0.285	0.366	2.35
S	RAT25102D	Tr25×10 (P5)	DX	24,665	25,000	22,080	22,394	0.2	8°03'	0.58	2.5	0.53	0.61	3.1
S	RAT30122D	Tr30x12 (P6)	DX	29,625	30,000	26,507	26,882	0.2	8°03'	0.57	3	1.135	1.03	4.52
S	RAT40142D	Tr40×14 (P7)	DX	39,575	40,000	35,977	36,375	0.2	7°01'	0.53	3.5	4.25	2.79	8.21

⁽¹⁾ Angolo di spira del diametro medio

⁽²⁾ Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.


S Stock disponibile a magazzino

R Disponibile su richiesta

Viti di precisione in C45 Gamma RAT HC Precision

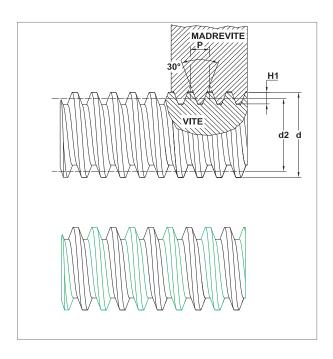
Caratteristiche Tecniche						
Materia prima	C45E 1.0503 Acciaio al carbonio C45					
Principi di filetto	I					
Classe di precisione	C7 = 0,050 mm su 300 mm					
Lunghezza massima	3000 mm					

	Codice	Filetto	Verso	(d	d	2	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza	
												superficiale ly	10 ³ mm ³	
												[10 ⁴ mm ⁴]		
R	RATHCP16041D	Tr16x04	DX	15,700	16,000	13,640	13,905	0.1	5°12'	0.46	2	0.068	0.124	1,2
R	RATHCP20041D	Tr20x04	DX	19,700	20,000	17,640	17,905	0.07	4°03'	0.4	2	0.238	0.318	2,01
R	RATHCP25051D	Tr25x05	DX	24,665	25,000	22,094	22,394	0.05	4°03'	0.4	2.5	0.53	0.61	3,1
R	RATHCP30061D	Tr30x06	DX	29,625	30,000	26,547	26,882	0.04	4°03'	0.4	3	1.135	1.03	4,52
R	RATHCP4007ID	Tr40x07	DX	39,575	40,000	36,020	36,375	0.03	3°30'	0.37	3.5	4.25	2.79	8,21
R	RATHCP50081D	Tr50x08	DX	49,550	50,000	45,468	45,868	0.03	3°10'	0.34	4	11.71	5.96	13,05

⁽¹⁾ Angolo di spira del diametro medio

⁽¹⁾ Angulo di spini dei diaminato incato (2) Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.


S Stock disponibile a magazzino

R Disponibile su richiesta

Viti di precisione in C45 Gamma RAT HC Precision 2 principi

Caratteristiche Tecniche						
Materia prima	C45E 1.0503 Acciaio al carbonio C45					
Principi di filetto	2					
Classe di precisione	C7 = 0,050 mm su 300 mm					
Lunghezza massima	3000 mm					

	Codice	Filetto	Verso	(d	d	12	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza	
												superficiale ly	10 ³ mm ³	
												[10 ⁴ mm ⁴]		
R	RATHCP16082D	Tr16x08 (P4)	DX	15,700	16,000	13,608	13,905	0,1	10°21'	0.6	2	0.068	0.124	1.2
R	RATHCP20082D	Tr20x08 (P4)	DX	19,700	20,000	17,608	17,905	0,07	8°03'	0.56	2	0.238	0.318	2.01
R	RATHCP25102D	Tr25×10 (P5)	DX	24,665	25,000	22,080	22,394	0,05	8°03'	0.58	2.5	0.53	0.61	3.1
R	RATHCP30122D	Tr30×12 (P6)	DX	29,625	30,000	26,507	26,882	0,04	8°03'	0.57	3	1.135	1.03	4.52
R	RATHCP40142D	Tr40×14 (P7)	DX	39,575	40,000	35,977	36,375	0,03	7°01'	0.53	3.5	4.25	2.79	8.21

 Π Rev. 2017.00

⁽¹⁾ Angolo di spira del diametro medio

⁽²⁾ Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

(3) Dimensione radiale di appoggio fra dente vite e dente madrevite.

S Stock disponibile a magazzino

R Disponibile su richiesta

Viti in acciaio ad alta resistenza

Caratteristiche costruttive e prestazionali

Viti di serraggio rullate a profilo di filetto Trapezoidale. Classe di resistenza 8.8, con elevatissime prestazioni di durezza nocciolo e fianco di filetto.

Prestazioni:

- Caratteristiche meccaniche della materia prima in classe di resistenza 8.8.
- Assenza di trattamento termico sul prodotto ottenuto con relativa:
 - economia di costi.
 - eliminazione delle fasi di raddrizzatura post-trattamento.
- Superiore resistenza all'usura.
- Compatibibiltà con trattamenti superficiali.
- Ottima lavorabilità meccanica e saldabilità.

Test comparativi con viti rullate in acciaio al carbonio hanno dimostrato:

- test di rottura a carico in trazione
 +31%
- test sulla durezza superficiale della parete filetto: +11%.

Impieghi consigliati

Esigenze di serraggio con azione di regolazione e blocco dei carichi in situazione statica.

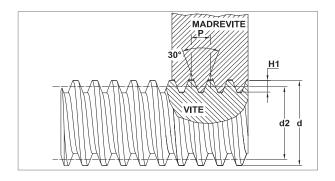
Madreviti

E' consigliato l'utilizzo in accoppiata con madreviti in acciaio a lunghezza maggiorata (MACXL) per aumentare la superficie di appoggio filetti anche su diametri ridotti.

Caratteristiche meccaniche materia prima

Acciaio classe 8.8

Acciaio speciale in classe di resistenza 8.8 allo stato di fornitura. L'azione di deformazione a freddo determinata dalla filettatura rullata aumenta ullteriormente la resistenza dei fianchi di filetto. Ottima lavorabilità meccanica e saldabilità.



Dati Tecnici	Gamme RAT - RAT Heavy
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7e
Numero di principi	1
Diametri disponibili:	16- 30 mm
Passi disponibili:	4 -6 mm
Senso di rotazione:	destro e sinistro
Lunghezza max:	3000 mm
Classe di Precisione ISO 3408-3 :	C8 = 0,100 mm su 300 mm
Rettilineità:	0,10 - 0,50 mm su 300 mm

Viti acciaio ad alta resistenza Gamma RAT Heavy

Caratteristiche Tec	niche					
Materia prima	Acciaio classe 8.8					
Principi di filetto	1					
Classe di precisione	C8 = 0,100 mm su 300 mm					
Lunghezza massima	3000 mm					

	Codice Articolo	Filetto	Verso	(t	d	d2		Angolo elica a (1)	H1 mm (2)	massa Kg/m
				min	max	min	max				
S	RATHI604ID	Tr16x04	DX	15,700	16,000	13,640	13,905	0,3	5°12'	2	1,2
S	RATHI604IS	Tr16x04 LH	SX	15,700	16,000	13,640	13,905	0,3	5°12'	2	1,2
S	RATH20041D	Tr20x04	DX	19,700	20,000	17,640	17,905	0,2	4°03'	2	1,98
S	RATH20041S	Tr20x04 LH	SX	19,700	20,000	17,640	17,905	0,2	4°03'	2	1,98
S	RATH25051D	Tr25x05	DX	24,665	25,000	22,094	22,394	0,2	4°03'	2,5	3,06
S	RATH25051S	Tr25x05 LH	SX	24,665	25,000	22,094	22,394	0,2	4°03'	2,5	3,06
S	RATH30061D	Tr30x06	DX	29,625	30,000	26,547	26,882	0,1	4°03'	3	4,47
S	RATH30061S	Tr30x06 LH	SX	29,625	30,000	26,547	26,882	0,1	4°03'	3	4,47

⁽¹⁾ Angolo di spira del diametro medio

⁽²⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.

S Stock disponibile a magazzino

R Disponibile su richiesta

Viti rullate trapezoidali Viti in acciaio inox

Caratteristiche costruttive e prestazionali

Viti di manovra rullate in acciaio inossidabile a profilo di filetto Trapezoidale. Gli azionamenti con viti in acciaio Inox rappresentano un'ottima soluzione per serraggi ed avanzamenti in ambienti operativi meccanicamente difficili a contatto con agenti ossidanti e corrosivi.

Impieghi consigliati

Gamma RIT304

Impiego negli azionamenti finalizzati al serraggio od alla manovra con elevati carichi e ridotte velocità di avanzamento in ambienti umidi ed ossidanti. La versione a due principi raddoppia la velocità di avanzamento e trova impiego nel posizionamento in ambienti aggressivi ove non è richiesta estrema precisione. Indicata per soluzioni nel settore nautico.

Gamma RIT316

Impiego negli azionamenti finalizzati alla manovra od al posizionamento in ambienti altamente aggressivi. Indicata per soluzioni nei settori agroalimentare, chimico, farmaceutico, petrolifero, tessile, cartario.

Inox system

Le gamme RIT304 e RIT316 possono essere accoppiate a madreviti modulari con boccola in acciaio Inox ed inserto filettato in materiale plastico (SWAP). Questa rappresenta un'ottima soluzione per un buon rendimento del sistema in azionamenti finalizzati all'avanzamento e posizionamento.

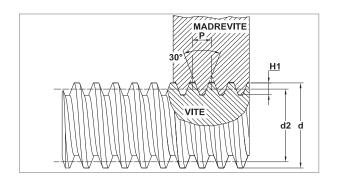
Caratteristiche meccaniche materia prima

Acciaio Inox A2 Aisi304 1.4301

Buona resistenza alla corrosione degli agenti atmosferici, buona lavorabilità, ottima saldabilità.

Acciaio Inox A4 Aisi316 1.4401

Eccellente resistenza alla corrosione ed alle aggressioni chimiche acide-alcaline, buona saldabilità.


Dati Tecnici	Gamme RIT304 - RIT316
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7e
Numero di principi	RIT304: I - 2
	RIT316: 1
Diametri disponibili:	
I principio	RIT304 : 12 - 60 mm
	RIT316 : 12 - 40 mm
2 principi	RIT304 : 16 - 40 mm
Passi disponibili:	
l principio	3 - 9 mm
2 principi	8 - 14 mm
Senso di rotazione:	
I principio	destro e sinistro
2 principi	destro
Lunghezza max:	3000 mm
Classe di Precisione ISO 3408-3 :	
I principio	RIT304 = C8 = 0,100 mm su 300 mm
	RIT316 = C8 = 0,100 mm su 300 mm
2 principi	RIT304 =C10= 0,200 mm/300 mm
Rettilineità:	
RIT 304	0,10 - 0,50 mm su 300 mm
RIT 316	0,10 - 0,50 mm su 300 mm

Viti in acciaio inox Aisi304

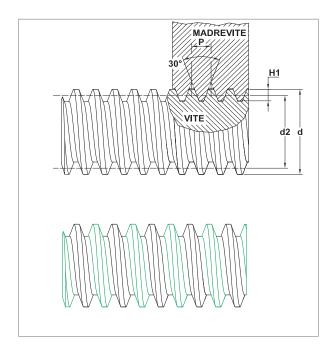
Gamma RIT304

Caratteristiche Tecniche								
Materia prima	1.4301 Acciaio Inox A2 Aisi304							
Principi di filetto	I							
Classe di precisione	C8 = 0,100 mm su 300 mm							
Lunghezza massima	3000 mm							

	Codice	Filetto	Verso	(d	d	2	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza 10 ³	
												superficiale ly	mm³	
												[10 ⁴ mm ⁴]		
S	RIT12031D	Tr12x03	DX	11,764	12,000	10,191	10,415	0,5	5°12'	0,46	1,5	0,02	0,047	0,65
S	RIT12031S	Tr12x03 LH	SX	11,764	12,000	10,191	10,415	0,5	5°12'	0,46	1,5	0,02	0,047	0,65
S	RITI4041D	Tr14x04	DX	13,700	14,000	11,640	11,905	0,5	6°03'	0,5	2	0,03	0,067	0,89
S	RIT14041S	Tr14X04 LH	SX	13,700	14,000	11,640	11,905	0,5	6°03'	0,5	2	0,03	0,067	0,89
S	RITI604ID	Tr16x04	DX	15,700	16,000	13,640	13,905	0,3	5°12'	0,46	2	0,068	0,124	1,2
S	RIT16041S	Tr16x04 LH	SX	15,700	16,000	13,640	13,905	0,3	5°12'	0,46	2	0,068	0,124	1,2
S	RIT18041D	Tr18x04	DX	17,700	18,000	15,640	15,905	0,3	4°33'	0,43	2	0,133	0,206	1,58
S	RIT18041S	Tr18x04 LH	SX	17,700	18,000	15,640	15,905	0,3	4°33'	0,43	2	0,133	0,206	1,58
S	RIT20041D	Tr20x04	DX	19,700	20,000	17,640	17,905	0,2	4°03'	0,4	2	0,238	0,318	2,05
S	RIT20041S	Tr20x04 LH	SX	19,700	20,000	17,640	17,905	0,2	4°03'	0,4	2	0,238	0,318	2,05
S	RIT25051D	Tr25x05	DX	24,665	25,000	22,094	22,394	0,2	4°03'	0,4	2,5	0,53	0,61	3,1
S	RIT25051S	Tr25x05 LH	SX	24,665	25,000	22,094	22,394	0,2	4°03'	0,4	2,5	0,53	0,61	3,1
S	RIT30061D	Tr30x06	DX	29,625	30,000	26,547	26,882	0,1	4°03'	0,4	3	1,135	1,03	4,52
S	RIT30061S	Tr30x06 LH	SX	29,625	30,000	26,547	26,882	0,1	4°03'	0,4	3	1,135	1,03	4,52
S	RIT35061D	Tr35x06	DX	34,625	35,000	31,547	31,882	0,1	3°25'	0,36	3	2,68	2,04	6,37
S	RIT35061S	Tr35x06 LH	SX	34,625	35,000	31,547	31,882	0,1	3°25'	0,36	3	2,68	2,04	6,37
S	RIT40071D	Tr40x07	DX	39,575	40,000	36,020	36,375	0,1	3°30'	0,37	3,5	4,25	2,79	8,12
S	RIT40071S	Tr40x07 LH	SX	39,575	40,000	36,020	36,375	0,1	3°30	0,37	3,5	4,25	2,79	8,12
S	RIT50081D	Tr50x08	DX	49,550	50,000	45,468	45,868	0,1	3°10'	0,34	4	11,71	5,96	13,05
S	RIT60091D	Tr60x09	DX	59,500	60,000	54,935	55,360	0,2	2°57'	0,33	4,5	26,4	11	18,65

⁽¹⁾ Angolo di spira del diametro medio
(2) Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.


S Stock disponibile a magazzino

R Disponibile su richiesta

Viti in acciaio inox Aisi304 Gamma RIT304 2 principi

Caratteristiche Tecniche							
Materia prima	1.4301 Acciaio Inox A2 Aisi304						
Principi di filetto	2						
Classe di precisione	C10 = 0,200 mm su 300 mm						
Lunghezza massima	3000 mm						

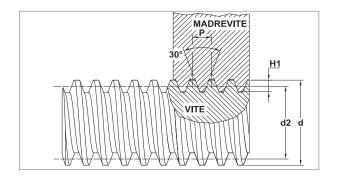
	Codice	Filetto	Verso	(d d2		Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m	
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza 10³	
												superficiale ly	mm³	
												[10 ⁴ mm ⁴]		
5	RIT16082D	Tr16x08 (P4)	DX	15,700	16,000	13,608	13,905	0.3	10°21'	0.6	2	0.068	0.124	1.2
	RIT20082D	Tr20x08 (P4)	DX	19,700	20,000	17,608	17,905	0.2	8°03'	0.56	2	0.238	0.318	2.05
5	RIT25102D	Tr25×10 (P5)	DX	24,665	25,000	22,080	22,394	0.2	8°03'	0.58	2.5	0.53	0.61	3.1
5	RIT30122D	Tr30x12 (P6)	DX	29,625	30,000	26,507	26,882	0.2	8°03'	0.57	3	1.135	1.03	4.52
5	RIT40142D	Tr40x14 (P7)	DX	39,575	40,000	35,977	36,375	0.2	7°01'	0.53	3.5	4.25	2.79	8.12

16

⁽¹⁾ Angolo di spira del diametro medio
(2) Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.

S Stock disponibile a magazzino


R Disponibile su richiesta

Viti in acciaio inox Aisi316

Gamma RIT316

Caratteristiche Tecniche							
Materia prima	1.4401 Acciaio Inox A4 Aisi316						
Principi di filetto	I						
Classe di precisione	C8 = 0,100 mm su 300 mm						
Lunghezza massima	3000 mm						

	Codice	Filetto	Verso	(t	d	2	Linearità	Angolo	rendimento	H1 mm (3)	momento	momento di	massa Kg/m
	Articolo			min	max	min	max		elica a (1)	η (2)		d'inerzia	resistenza 10³	
												superficiale ly	mm³	
												[10 ⁴ mm ⁴]		
S	RIT31612031D	Tr12x03	DX	11,764	12,000	10,191	10,415	0.5	5°12'	0.46	1.5	0.02	0.047	0.65
S	RIT31612031S	Tr12x03 LH	SX	11,764	12,000	10,191	10,415	0.5	5°12'	0.46	1.5	0.02	0.047	0.65
S	RIT31616041D	Tr16x04	DX	15,700	16,000	13,640	13,905	0.3	5°12'	0.46	2	0.068	0.124	1.2
S	RIT31616041S	Tr16x04 LH	SX	15,700	16,000	13,640	13,905	0.3	5°12'	0.46	2	0.068	0.124	1.2
S	RIT31620041D	Tr20x04	DX	19,700	20,000	17,640	17,905	0.2	4°03'	0.4	2	0.238	0.318	2.05
S	RIT31620041S	Tr20x04 LH	SX	19,700	20,000	17,640	17,905	0.2	4°03'	0.4	2	0.238	0.318	2.05
S	RIT31625051D	Tr25×05	DX	24,665	25,000	22,094	22,394	0.2	4°03'	0.4	2.5	0.53	0.61	3.1
S	RIT31625051S	Tr25x05 LH	SX	24,665	25,000	22,094	22,394	0.2	4°03'	0.4	2.5	0.53	0.61	3.1
S	RIT31630061D	Tr30×06	DX	29,625	30,000	26,547	26,882	0.1	4°03'	0.4	3	1.135	1.03	4.52
S	RIT31630061S	Tr30x06 LH	SX	29,625	30,000	26,547	26,882	0.1	4°03'	0.4	3	1.135	1.03	4.52
S	RIT31640071D	Tr40×07	DX	39,575	40,000	36,020	36,375	0.1	3°30'	0.37	3.5	4.25	2.79	8.12
S	RIT31640071S	Tr40x07 LH	SX	39,575	40,000	36,020	36,375	0.1	3°30	0.37	3.5	4.25	2.79	8.12

⁽¹⁾ Angolo di spira del diametro medio
(2) Rendimento teorico per la conversione di una rotazione in un movimento longitudinale con coefficiente di attrito I = 0,1. Nel capitolo Informazioni Tecniche sono disponibili i dati di RENDIMENTO REALE ottenuti sperimentalmente con prove di laboratorio.

⁽³⁾ Dimensione radiale di appoggio fra dente vite e dente madrevite.

S Stock disponibile a magazzino

R Disponibile su richiesta

Madreviti in acciaio

Caratteristiche costruttive e prestazionali

Madreviti in acciaio automatico con filettatura Trapezoidale. La filettatura è ottenuta per asportazione di truciolo, con speciale processo a garanzia dell'assenza di "vibrazione" sul filetto e con smussatura degli spigoli dei filetti. Raccomandate per azioni di regolazione manuale e serraggio.

Impieghi consigliati

Gamma MAC

Madreviti di forma cilindrica. Lunghezza della parte filettata dimensionata per azioni di serraggio. Idonea all'inserimento e fissaggio all'interno di tubi o strutture cave. Comoda per la rilavorazione a disegno.

Gamma MACXL

Madreviti di forma cilindrica con lunghezza maggiorata per aumentare la superficie di contatto fra i filetti. Idonee per serraggi pesanti. Raccomandate in coppia con gamma viti RAT Heavy.

Gamma MAF

Madreviti di forma cilindrica con flangia preforata per viti di fissaggio di tipo TCCE.

Gamma MAE

Madreviti di forma esagonale. Particolarmente comode per regolazioni manuali con chiave.

Gamma MAQ e MAQF

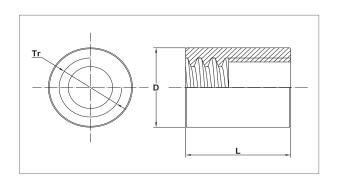
Madreviti di forma quadra parallelepipeda. Lunghezza della parte filettata dimensionata per azioni di serraggio. La gamma MAQF presenta una preforatura per per viti di fissaggio di tipo TCCE.

Caratteristiche meccaniche materia prima

Acciaio automatico IISMnPb37 1.0737

cciaio a basso contenuto di carbonio, con S e Pb. Il contenuto di Pb resta largamente entro i limiti massimi previsti dalla normativa sulla limitazione delle sostanze pericolose presenti in apparecchiature elettriche ed elettroniche. Acciaio saldabile a filo (MIG-MAG) e ad elettrodo.

Dati Tecnici	Gamme MAC - MACXL - MAF - MAE MAQ - MAQF
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	I - 2
Diametri disponibili:	
l principio	12 - 80 mm
2 principi	12 - 40 mm
Passi disponibili:	
l principio	3 - 10 mm
2 principi	6 - 14 mm
Senso di rotazione:	
I principio	destro e sinistro
2 principi	destro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,25 mm
tolleranza radiale standard	0,30 mm



Madreviti in acciaio Gamma Cilindriche MAC

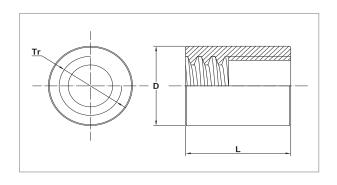
Caratteristiche Tecniche							
Materia prima	Acciaio 11SMnPb37 1.0737						
Principi di filetto	1						
Tolleranze boccola							
D	h9						
L	± 0,1 mm						

Indicata per azioni di serraggio. Idonea all'inserimento e fissaggio all'interno di tubi o strutture cave. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MAC12031D	Tr12x03	dx	36	36	250	593,76	0,34
S	MAC12031S	Tr12x03 LH	sx	36	36	250	593,76	0,34
S	MACI404ID	Tr14x04	dx	36	36	245	678,58	0,35
S	MAC14041S	Tr14X04 LH	sx	36	36	245	678,58	0,35
S	MACI604ID	Tr16x04	dx	36	36	230	791,68	0,32
S	MAC16041S	Tr16x04 LH	sx	36	36	230	791,68	0,32
S	MACI804ID	Tr18x04	dx	36	36	220	904,77	0,32
S	MACI804IS	Tr18x04 LH	sx	36	36	220	904,77	0,32
S	MAC20041D	Tr20x04	dx	40	40	300	1130,97	0,25
S	MAC20041S	Tr20x04 LH	sx	40	40	395	1130,97	0,25
S	MAC22051D	Tr22x05	dx	40	40	285	1225,22	0,28
S	MAC22051S	Tr22x05 LH	sx	40	40	280	1225,22	0,28
S	MAC25051D	Tr25x05	dx	45	45	400	1590,43	0,26
S	MAC25051S	Tr25x05 LH	sx	45	45	395	1590,43	0,26
S	MAC28051D	Tr28x05	dx	45	45	360	1802,48	0,25
S	MAC28051S	Tr28x05 LH	sx	45	45	360	1802,48	0,25
S	MAC30061D	Tr30x06	dx	50	50	520	2120,57	0,26
S	MAC30061S	Tr30x06 LH	sx	50	50	515	2120,57	0,26
S	MAC35061D	Tr35x06	dx	55	55	650	2764,6	0,22
S	MAC35061S	Tr35x06 LH	SX	55	55	650	2764,6	0,22
S	MAC36061D	Tr36x06	dx	55	55	635	2851	0,22
S	MAC36061S	Tr36x06 LH	SX	55	55	635	2851	0,22
S	MAC40071D	Tr40x07	dx	60	60	800	3440,04	0,24
S	MAC40071S	Tr40x07 LH	sx	60	60	795	3440,04	0,24
S	MAC45081D	Tr45x08	dx	65	65	960	4186,17	0,24
S	MAC45081S	Tr45x08 LH	sx	65	65	960	4186,17	0,24
S	MAC50081D	Tr50x08	dx	70	70	1110	5057,96	0,24
S	MAC50081S	Tr50x08 LH	sx	70	70	1110	5057,96	0,24
S	MAC55091D	Tr55x09	dx	80	80	1760	6346,01	0,23
S	MAC60091D	Tr60x09	dx	80	80	1500	6974,33	0,23
S	MAC60091S	Tr60x09 LH	SX	80	80	1500	6974,33	0,23
S	MAC70101D	Tr70x10	dx	100	100	3875	10210,17	0,22
S	MAC80101D	Tr80×10	dx	120	120	8080	11780,27	0,22

Stock disponibile a magazzino

R Disponibile su richiesta



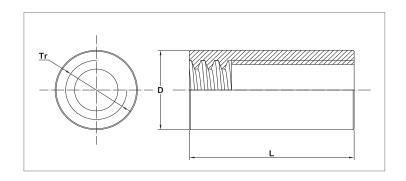
Madreviti in acciaio Gamma Cilindriche MAC 2 principi

Caratteristiche Tecniche						
Materia prima	Acciaio 11SMnPb37 1.0737					
Principi di filetto	2					
Tolleranze boccola						
D	h9					
L	± 0,1 mm					

Indicata per azioni di serraggio. Idonea all'inserimento e fissaggio all'interno di tubi o strutture cave. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MAC12062D	Tr12x06 (P3)	dx	36	36	250	593.76	0.37
S	MAC14082D	Tr14x08 (P4)	dx	36	36	245	678.58	0.46
S	MAC16082D	Tr16x08 (P4)	dx	36	36	230	791.68	0.36
S	MAC18082D	Tr18x08 (P4)	dx	36	36	220	904.77	0.35
S	MAC20082D	Tr20x08 (P4)	dx	40	40	300	1130.97	0.34
S	MAC22102D	Tr22x10 (P5)	dx	40	40	285	1225.22	0.38
S	MAC25102D	Tr25×10 (P5)	dx	45	45	400	1590.43	0.36
S	MAC30122D	Tr30x12 (P6)	dx	50	50	520	2120.57	0.34
S	MAC40142D	Tr40×14 (P7)	dx	60	60	800	3440.04	0.36

S Stock disponibile a magazzino

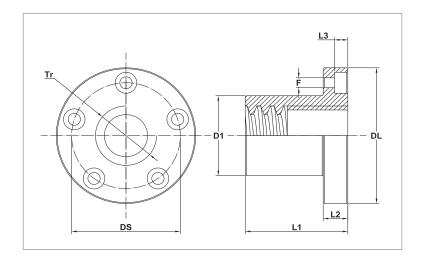


Madreviti in acciaio Gamma Cilindriche MAC XL

Caratteristiche Tecniche							
Materia prima	Acciaio 11SMnPb37 1.0737						
Principi di filetto	1						
Tolleranze boccola							
D	h9						
L	± 0,1 mm						

Indicata per azioni di serraggio pesante.
Idonea per serraggi pesanti.
Raccomandate in coppia con la gamma viti RAT heavy. Comoda per la rilavorazione a disegno.

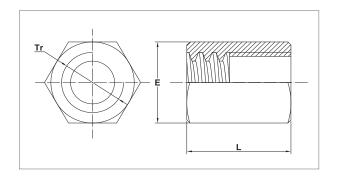
	Codice	Filetto	Verso	D	L	massa	Superficie di supporto
	Articolo			mm	mm	gr	in mm²
S	MACXLI604ID	Tr16x04	dx	36	48	305	1055,57
S	MACXL20041D	Tr20x04	dx	40	60	450	1696,46
S	MACXL25051D	Tr25x05	dx	45	75	665	2650,71
S	MACXL30061D	Tr30x06	dx	50	90	935	3817,03


S Stock disponibile a magazzino

Madreviti in acciaio Gamma Flangiate MAF

Caratteristiche Tecniche						
Materia prima	Acciaio 11SMnPb37 1.0737					
Principi di filetto	1					
Tolleranze boccola						
DI	h7					
DL, DS, L1, L2, L3	± 0,1 mm					

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE 8.8	massa gr	Superficie di supporto in mm²	Rendimento dinamico
S	MAFI604ID	Tr16x04	dx	22	45	32	30	10	6	4	M 5	130	659.73	0.37
S	MAF20041D	Tr20x04	dx	30	52	40	40	12	6	5	M 5	230	1130.97	0.33
S	MAF25051D	Tr25×05	dx	35	62	48	45	12	6.5	5	M 6	365	1590.43	0.29
S	MAF30061D	Tr30x06	dx	40	68	53	50	12	6.5	5	M 6	470	2120.57	0.3
S	MAF40071D	Tr40×07	dx	55	84	68	65	12	6.5	6	M 6	945	3726.71	0.28
S	MAF50081D	Tr50x08	dx	65	100	80	80	15	9	6	M 8	1490	5780.53	0.25

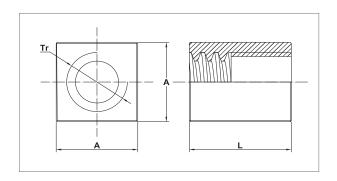

S Stock disponibile a magazzino

Madreviti in acciaio Gamma Esagonali MAE

Caratteristiche Tecniche							
Materia prima	Acciaio 11SMnPb37 1.0737						
Principi di filetto	1						
Tolleranze boccola							
Е	h9						
L	± 0,1 mm						

	Codice	Filetto	Verso	E	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MAEI604ID	Tr16x04	dx	27	24	83	791,68	0,32
S	MAE20041D	Tr20x04	dx	30	30	112	1130,97	0,25
S	MAE25051D	Tr25x05	dx	45	45	450	1590,43	0,26
S	MAE30061D	Tr30x06	dx	50	50	585	2120,57	0,26
S	MAE40071D	Tr40x07	dx	60	60	906	3440,04	0,24
S	MAE50081D	Tr50x08	dx	70	70	1316	5057,96	0,24

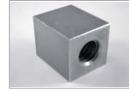
S Stock disponibile a magazzino



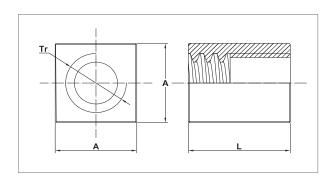
Madreviti in acciaio Gamma Quadre MAQ

Caratteristiche Tecniche						
Materia prima	Acciaio 11SMnPb37 1.0737					
Principi di filetto	1					
Tolleranze boccola						
Α	hll					
L	± 0,1 mm					

Indicata per azioni di serraggio. Comoda per la rilavorazione a disegno.


	Codice	Filetto	Verso	Α	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MAQ12031D	Tr12x03	dx	25	30	122	494.8	0.34
S	MAQ12031S	Tr12x03 LH	sx	25	30	122	494.8	0.34
S	MAQ1404ID	Tr14x04	dx	30	35	208	659.73	0.35
S	MAQ1404IS	Tr14X04 LH	sx	30	35	208	659.73	0.35
S	MAQ1604ID	Tr16x04	dx	30	40	198	769.69	0.32
S	MAQ1604IS	Tr16x04 LH	sx	30	40	198	769.69	0.32
S	MAQ1804ID	Tr18x04	dx	35	40	310	1005.31	0.32
S	MAQ1804IS	Tr18x04 LH	sx	35	40	310	1005.31	0.32
S	MAQ2004ID	Tr20x04	dx	40	50	512	1413.72	0.25
S	MAQ2004IS	Tr20x04 LH	sx	40	50	512	1413.72	0.25
S	MAQ22051D	Tr22x05	dx	40	50	490	1531.53	0.28
S	MAQ22051S	Tr22x05 LH	sx	40	50	490	1531.53	0.28
S	MAQ25051D	Tr25x05	dx	45	55	678	1943.86	0.26
S	MAQ25051S	Tr25x05 LH	sx	45	55	678	1943.86	0.26
S	MAQ28051D	Tr28x05	dx	45	55	627	2203.04	0.25
S	MAQ28051S	Tr28x05 LH	sx	45	55	627	2203.04	0.25
S	MAQ30061D	Tr30x06	dx	50	60	873	2544.69	0.26
S	MAQ30061S	Tr30x06 LH	sx	50	60	873	2544.69	0.26
S	MAQ35061D	Tr35x06	dx	60	75	1611	3769.91	0.22
S	MAQ35061S	Tr35x06 LH	sx	60	75	1611	3769.91	0.22
S	MAQ4007ID	Tr40x07	dx	60	75	1442	4300.05	0.24
S	MAQ40071S	Tr40x07 LH	sx	60	75	1442	4300.05	0.24
S	MAQ45081D	Tr45x08	dx	70	90	2430	5796.24	0.24
S	MAQ45081S	Tr45x08 LH	sx	70	90	2430	5796.24	0.24
S	MAQ5008ID	Tr50x08	dx	70	90	2170	6503.I	0.24
S	MAQ5008IS	Tr50x08 LH	sx	70	90	2170	6503.1	0.24
S	MAQ55091D	Tr55x09	dx	80	100	3305	7932.52	0.23
S	MAQ60091D	Tr60x09	dx	80	100	2990	8717.92	0.23
S	MAQ60091S	Tr60x09 LH	sx	80	100	2990	8717.92	0.23
S	MAQ70101D	Tr70x10	dx	100	120	3020	12252.2	0.22

Stock disponibile a magazzino



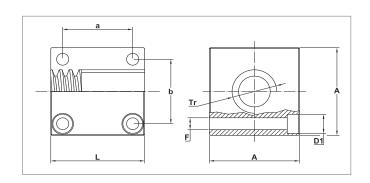
Madreviti in acciaio Gamma Quadre MAQ 2 principi

Caratteristiche Tecniche							
Materia prima	Acciaio 11SMnPb37 1.0737						
Principi di filetto	2						
Tolleranze boccola							
Α	hII						
L	± 0,1 mm						

Indicata per azioni di serraggio. Comoda per la rilavorazione a disegno.

	Codice Articolo	Filetto	Verso	A mm	L mm	massa gr	Superficie di supporto in mm²	Rendimento dinamico
S	MAQ12062D	Tr12x06 (P3)	dx	25	30	122	494,8	0,37
S	MAQ14082D	Tr14x08 (P4)	dx	30	35	208	659,73	0,46
S	MAQ16082D	Tr16x08 (P4)	dx	30	40	198	769,69	0,36
S	MAQ18082D	Tr18x08 (P4)	dx	35	40	310	1005,31	0,35
S	MAQ20082D	Tr20x08 (P4)	dx	40	50	512	1413,72	0,34
S	MAQ22102D	Tr22×10 (P5)	dx	40	50	490	1531,53	0,38
S	MAQ25102D	Tr25×10 (P5)	dx	45	55	678	1943,86	0,36
S	MAQ30122D	Tr30x12 (P6)	dx	50	60	873	2544,69	0,34
S	MAQ40142D	Tr40x14 (P7)	dx	60	75	1442	4300,05	0,36

S Stock disponibile a magazzino



Madreviti in acciaio Gamma Quadre Preforate MAQF

Caratteristiche Tecniche							
Materia prima	Acciaio 11SMnPb37 1.0737						
Principi di filetto	1						
Tolleranze boccola							
Α	hll						
L	± 0,1 mm						

Indicata per azioni di serraggio. Preforata per montaggio con viti TCCE.

	Codice	Filetto	Verso	Α	L	а	b	D1	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	mm	mm	viti	gr	in mm²	
								TCCE 8.8			
S	MAQFI203ID	Tr12x03	dx	25	30	20	17	M4	107	494.8	0.34
S	MAQF12031S	Tr12x03 LH	SX	25	30	20	17	M4	107	494.8	0.34
S	MAQFI404ID	Tr14x04	dx	30	35	24	20	M5	181	659.73	0.35
S	MAQFI404IS	Tr14X04 LH	SX	30	35	24	20	M5	181	659.73	0.35
S	MAQFI604ID	Tr16x04	dx	35	40	26	24	M5	280	769.69	0.32
S	MAQFI604IS	Tr16x04 LH	SX	35	40	26	24	M5	280	769.69	0.32
S	MAQFI804ID	Tr18x04	dx	35	40	26	24	M5	267	1005.31	0.32
S	MAQF18041S	Tr18x04 LH	SX	35	40	26	24	M5	267	1005.31	0.32
S	MAQF20041D	Tr20x04	dx	40	50	38	28	M6	465	1413.72	0.25
S	MAQF20041S	Tr20x04 LH	SX	40	50	38	28	M6	465	1413.72	0.25
S	MAQF22051D	Tr22x05	dx	40	50	38	29	M6	443	1531.53	0.28
S	MAQF22051S	Tr22x05 LH	SX	40	50	38	29	M6	443	1531.53	0.28
S	MAQF25051D	Tr25×05	dx	45	55	40	33	M6	620	1943.86	0.26
S	MAQF25051S	Tr25x05 LH	SX	45	55	40	33	M6	620	1943.86	0.26
S	MAQF28051D	Tr28x05	dx	45	55	40	34	M6	572	2203.04	0.25
S	MAQF28051S	Tr28x05 LH	sx	45	55	40	34	M6	572	2203.04	0.25
S	MAQF30061D	Tr30x06	dx	50	60	49	38	M6	817	2544.69	0.26
S	MAQF30061S	Tr30x06 LH	SX	50	60	49	38	M6	817	2544.69	0.26
S	MAQF35061D	Tr35x06	dx	60	75	56	45	M8	1476	3769.91	0.22
S	MAQF35061S	Tr35x06 LH	SX	60	75	56	45	M8	1476	3769.91	0.22
S	MAQF40071D	Tr40×07	dx	60	75	55	49	M8*	1344	4300.05	0.24
S	MAQF40071S	Tr40x07 LH	SX	60	75	55	49	M8*	1344	4300.05	0.24
S	MAQF45081D	Tr45×08	dx	70	90	70	56	M8	2315	5796.24	0.24
S	MAQF45081S	Tr45×08 LH	SX	70	90	70	56	M8	2315	5796.24	0.24
S	MAQF50081D	Tr50×08	dx	70	90	70	59	M8*	2055	6503.I	0.24
S	MAQF50081S	Tr50x08 LH	SX	70	90	70	59	M8*	2055	6503.I	0.24
S	MAQF55091D	Tr55×09	dx	80	100	80	65	M8	3150	7932.52	0.23
S	MAQF60091D	Tr60x09	dx	80	100	80	69	M8*	2845	8717.92	0.23
S	MAQF70101D	Tr70×10	dx	100	120	100	85	M8	5830	12252.2	0.22

^(*) viti di fissaggio TCCE speciali incluse **S** Stock disponibile a magazzino

R Disponibile su richiesta

Madreviti in bronzo CuSn12

Caratteristiche costruttive e prestazionali

Madreviti in bronzo CuSn12 con filettatura Trapezoidale. La filettatura è ottenuta per asportazione di truciolo, con speciale processo a garanzia dell'assenza di "vibrazione" sul filetto e con smussatura degli spigoli dei filetti. Raccomandate per azioni di movimentazione carichi a velocità medio-basse. Buona resistenza all'usura. **Durezza 90-100 gradi HB**.

Impieghi consigliati

Gamma MBC

Madreviti di forma cilindrica. Lunghezza della parte filettata dimensionata per azioni di manovra. Idonea all'inserimento e blocco all'interno di tubi o strutture cave.

Gamma MBF

Madreviti flangiate preforate per fissaggio con viti di tipo TCCE. Utilizzo flessibile e montaggio veloce.

Gamma MBF XL

Madreviti flangiate con lunghezza maggiorata della parte filettata. Superiore resistenza all'usura grazie alla maggior superficie di contatto dei filetti.

Gamma MBQ

Madreviti di forma quadra parallelepipeda. Lunghezza della parte filettata dimensionata per azioni di manovra. Idonea all'inserimento e blocco all'interno di strutture.

Gamma MBQF

Madreviti quadre a forma di parallelepipedo. La preforatura per alloggiare viti di fissaggio di tipo TCCE risulta utilissima per la rapidità di utilizzo in fase di montaggio e di fissaggio meccanico.

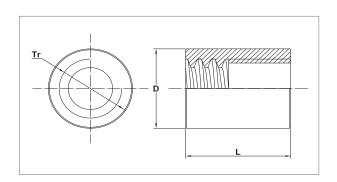
Caratteristiche meccaniche materia prima

Bronzo CuSn12 UNI 7013-72

Bronzo con stagno al 12%. Presenta superiori proprietà di durezza e resistenza all'usura da strisciamento rispetto ai bronzi industriali. Soluzione che fornisce un ottimo compromesso fra buon rendimento del sistema (ridotto attrito bronzo-acciaio) e resistenza all'usura della madrevite. Ciclo produttivo gestito con certificazioni di colata a garanzia della purezza della lega utilizzata.

Dati Tecnici	Gamme MBC - MBF - MBFXL - MBQ MBQF
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	I - 2
Diametri disponibili:	
l principio	10 - 80 mm
2 principi	12 - 40 mm
Passi disponibili:	
l principio	3 - 10 mm
2 principi	6 - 14 mm
Senso di rotazione:	
I principio	destro e sinistro
2 principi	destro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,10 mm
tolleranza radiale standard	da 0,10 mm a 0,30 mm in progressione sui
	diametri

Madreviti bronzo CuSn12


Gamma Cilindriche MBC

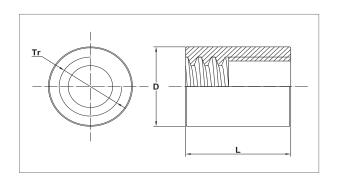
Caratteristiche Tecniche						
Materia prima	Bronzo CuSn12 UNI 7013-72					
Principi di filetto	I					
Tolleranze boccola						
D	h7					
L	± 0,1 mm					

Indicata per azioni di manovra. Idonea all'inserimento e blocco all'interno di tubi o strutture cave.

Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MBCI003ID	Tr10x03	dx	20	20	50	480,66	0,35
S	MBCI203ID	Tr12x03	dx	36	36	250	593,76	0,35
S	MBC12031S	Tr12x03 LH	sx	36	36	250	593,76	0,35
S	MBCI404ID	Tr14x04	dx	36	36	245	678,58	0,37
S	MBC14041S	Tr14X04 LH	sx	36	36	245	678,58	0,37
S	MBCI604ID	Tr16x04	dx	36	36	230	791,68	0,37
S	MBC16041S	Tr16x04 LH	sx	36	36	230	791,68	0,37
S	MBCI804ID	Tr18x04	dx	36	36	220	904,77	0,34
S	MBC18041S	Tr18x04 LH	sx	36	36	220	904,77	0,34
S	MBC20041D	Tr20x04	dx	40	40	367	1130,97	0,33
S	MBC20041S	Tr20x04 LH	sx	40	40	367	1130,97	0,33
S	MBC22051D	Tr22x05	dx	40	40	285	1225,22	0,29
S	MBC22051S	Tr22x05 LH	sx	40	40	280	1225,22	0,29
S	MBC25051D	Tr25x05	dx	45	45	492	1590,43	0,29
S	MBC25051S	Tr25x05 LH	sx	45	45	492	1590,43	0,29
S	MBC28051D	Tr28x05	dx	45	45	360	1802,48	0,28
S	MBC28051S	Tr28x05 LH	sx	45	45	360	1802,48	0,28
S	MBC30061D	Tr30x06	dx	50	50	520	2120,57	0,3
S	MBC30061S	Tr30x06 LH	sx	50	50	515	2120,57	0,3
S	MBC35061D	Tr35x06	dx	55	55	650	2764,6	0,27
S	MBC35061S	Tr35x06 LH	sx	55	55	650	2764,6	0,27
S	MBC36061D	Tr36x06	dx	55	55	638	2851	0,27
S	MBC36061S	Tr36x06 LH	sx	55	55	638	2851	0,27
S	MBC40071D	Tr40x07	dx	60	60	800	3440,04	0,28
S	MBC40071S	Tr40x07 LH	sx	60	60	795	3440,04	0,28
S	MBC45081D	Tr45x08	dx	65	65	960	4186,17	0,28
S	MBC45081S	Tr45x08 LH	sx	65	65	960	4186,17	0,28
S	MBC50081D	Tr50x08	dx	70	70	1110	5057,96	0,25
S	MBC50081S	Tr50x08 LH	sx	70	70	1110	5057,96	0,25
S	MBC55091D	Tr55x09	dx	80	80	1760	6346,01	0,26
S	MBC60091D	Tr60x09	dx	80	80	1500	6974,33	0,25
S	MBC60091S	Tr60x09 LH	sx	80	80	1500	6974,33	0,25
S	MBC70101D	Tr70x10	dx	100	100	3875	10210,17	0,24

S Stock disponibile a magazzino


Madreviti bronzo CuSn12 Gamma Cilindriche MBC 2 principi

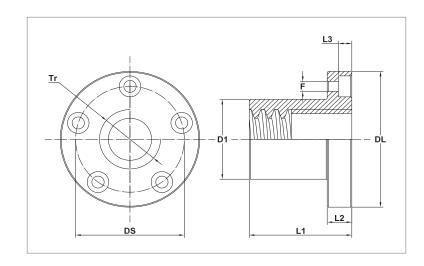
Caratteristiche Tecniche						
Materia prima	Bronzo CuSn12 UNI 7013-72					
Principi di filetto	2					
Tolleranze boccola						
D	h7					
L	± 0,1 mm					

Indicata per azioni di manovra. Idonea all'inserimento e blocco all'interno di tubi o strutture cave.

Comoda per la rilavorazione a disegno.

	Codice Articolo	Filetto	Verso	D mm	L mm	massa gr	Superficie di supporto in mm²	Rendimento dinamico
S	MBC12062D	Tr12x06 (P3)	dx	36	36	250	593.76	0.39
S	MBC14082D	Tr14x08 (P4)	dx	36	36	245	678.58	0.49
S	MBC16082D	Tr16x08 (P4)	dx	36	36	230	791.68	0.43
S	MBC18082D	Tr18x08 (P4)	dx	36	36	220	904.77	0.37
S	MBC20082D	Tr20x08 (P4)	dx	40	40	300	1130.97	0.35
S	MBC22102D	Tr22×10 (P5)	dx	40	40	285	1225.22	0.39
S	MBC25102D	Tr25×10 (P5)	dx	45	45	400	1590.43	0.39
S	MBC30122D	Tr30x12 (P6)	dx	50	50	520	2120.57	0.39
S	MBC40142D	Tr40x14 (P7)	dx	60	60	800	3440.04	0.38

S Stock disponibile a magazzino


Madreviti bronzo CuSn12

Gamma Flangiate MBF

Caratteristiche Tecniche							
Materia prima	Bronzo CuSn12 UNI 7013-72						
Principi di filetto	1						
Tolleranze boccola							
DI	h7						
DL,DS,L1,L2,L3	± 0,1 mm						

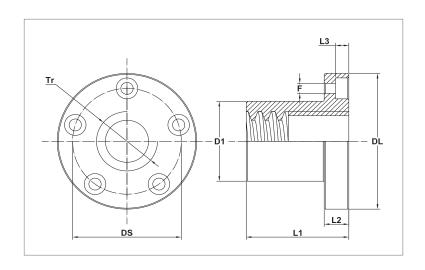
Indicata per azioni di manovra, flangia preforata per montaggio con viti TCCE.

	Codice	Filetto	Verso	D1	DL	Ds	L1	L2	L3	fori	viti	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	mm	mm	mm	mm		TCCE 8.8	gr	in mm²	
S	MBF10031D	Tr10x03	dx	18	37	26	22	8	5	4	M 4	255	293.73	0.35
S	MBF12031D	Tr12x03	dx	18	37	26	22	8	5	4	M 4	250	362.85	0.35
S	MBF12031S	Tr12x03 LH	SX	18	37	26	22	8	5	4	M 4	250	362.85	0.35
S	MBF14041D	Tr14x04	dx	20	42	30	25	10	6	4	M 5	245	471.23	0.37
S	MBF14041S	Tr14X04 LH	sx	20	42	30	25	10	6	4	M 5	245	471.23	0.37
S	MBF16041D	Tr16x04	dx	22	45	32	30	10	6	4	M 5	230	659.73	0.37
S	MBF16041S	Tr16x04 LH	sx	22	45	32	30	10	6	4	M 5	230	659.73	0.37
S	MBF18041D	Tr18x04	dx	25	48	35	35	10	6	4	M 5	220	879.64	0.34
S	MBF18041S	Tr18x04 LH	sx	25	48	35	35	10	6	4	M 5	220	879.64	0.34
S	MBF20041D	Tr20x04	dx	30	52	40	40	10	6	5	M 5	300	1130.97	0.33
S	MBF20041S	Tr20x04 LH	sx	30	52	40	40	10	6	5	M 5	395	1130.97	0.33
S	MBF22051D	Tr22x05	dx	30	52	40	40	10	6	5	M 5	285	1225.22	0.29
S	MBF22051S	Tr22x05 LH	sx	30	52	40	40	10	6	5	M 5	280	1225.22	0.29
S	MBF25051D	Tr25x05	dx	35	62	48	45	12	6,5	5	M 6	400	1590.43	0.29
S	MBF25051S	Tr25x05 LH	sx	35	62	48	45	12	6,5	5	M 6	395	1590.43	0.29
S	MBF28051D	Tr28x05	dx	40	68	53	50	12	6,5	5	M 6	360	2002.76	0.28
S	MBF28051S	Tr28x05 LH	sx	40	68	53	50	12	6,5	5	M 6	360	2002.76	0.28
S	MBF30061D	Tr30x06	dx	40	68	53	50	12	6,5	5	M 6	520	2120.57	0.3
S	MBF30061S	Tr30x06 LH	sx	40	68	53	50	12	6,5	5	M 6	515	2120.57	0.3
S	MBF35061D	Tr35x06	dx	50	78	63	60	12	6,5	6	M 6	650	3015.92	0.27
S	MBF35061S	Tr35x06 LH	SX	50	78	63	60	12	6,5	6	M 6	650	3015.92	0.27
S	MBF36061D	Tr36x06	dx	50	78	63	60	12	6,5	6	M 6	635	3110.18	0.27
S	MBF36061S	Tr36x06 LH	SX	50	78	63	60	12	6,5	6	M 6	635	3110.18	0.27
S	MBF40071D	Tr40x07	dx	55	84	68	65	12	6,5	6	M 6	800	3726.71	0.28
S	MBF40071S	Tr40x07 LH	SX	55	84	68	65	12	6,5	6	M 6	795	3726.71	0.28
S	MBF45081D	Tr45×08	dx	55	90	72	65	15	9	6	M 8	960	4186.17	0.28
S	MBF45081S	Tr45x08 LH	SX	55	90	72	65	15	9	6	M 8	960	4186.17	0.28
S	MBF50081D	Tr50x08	dx	65	100	80	80	15	9	6	M 8	1110	5780.53	0.25
S	MBF50081S	Tr50x08 LH	sx	65	100	80	80	15	9	6	M 8	1110	5780.53	0.25
S	MBF55091D	Tr55x09	dx	70	120	95	80	18	10,5	6	M 10	1760	6346.01	0.26
S	MBF60091D	Tr60x09	dx	75	120	95	100	18	10,5	6	M 10	1500	8717.91	0.25
S	MBF60091S	Tr60x09 LH	SX	75	120	95	100	18	10,5	6	M 10	1500	8717.91	0.25

Stock disponibile a magazzino

30

R Disponibile su richiesta



Madreviti bronzo CuSn12 Gamma Flangiate MBF 2 principi

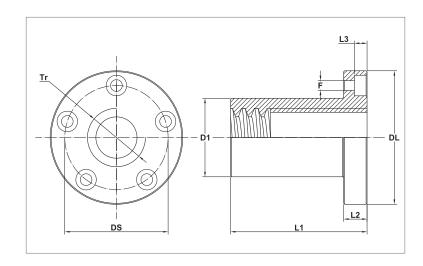
Caratteristiche Tecniche							
Materia prima	Bronzo CuSn12 UNI 7013-72						
Principi di filetto	2						
Tolleranze boccola							
DI	h7						
DL,DS,L1,L2,L3	± 0,1 mm						

Indicata per azioni di manovra, flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE 8.8	massa gr	Superficie di supporto in mm²	Rendimento dinamico
S	MBF12062D	Tr12x06 (P3)	dx	18	37	26	22	8	5	4	M 4	250	362,85	0.39
S	MBF14082D	Tr14x08 (P4)	dx	20	42	30	25	10	6	4	M 5	245	471.23	0.49
S	MBF16082D	Tr16x08 (P4)	dx	22	45	32	30	10	6	4	M 5	230	659.73	0.43
S	MBF18082D	Tr18x08 (P4)	dx	25	48	35	35	10	6	4	M 5	220	879.64	0.37
S	MBF20082D	Tr20x08 (P4)	dx	30	52	40	40	10	6	5	M 5	300	1130.97	0.35
S	MBF22102D	Tr22x10 (P5)	dx	30	52	40	40	10	6	5	M 5	285	1225.22	0.39
S	MBF25102D	Tr25×10 (P5)	dx	35	62	48	45	12	6,5	5	M 6	400	1590.43	0.39
S	MBF30122D	Tr30×12 (P6)	dx	40	68	53	50	12	6,5	5	M 6	520	2120.57	0.39
S	MBF40142D	Tr40×14 (P7)	dx	55	84	68	65	12	6,5	6	M 6	800	3726.71	0.38

S Stock disponibile a magazzino

R Disponibile su richiesta


Madreviti bronzo CuSn12

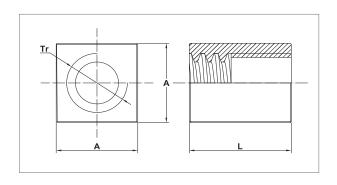
Gamma Flangiate extra long

Caratteristiche Tecniche									
Materia prima	Bronzo CuSn12 UNI 7013-72								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h7								
DL,DS,L1,L2,L3	± 0,1 mm								

Indicata per azioni di manovra e movimentazione con carichi elevati, flangia preforata per montaggio con viti TCCE.

	Codice	Filetto	Verso	D1	DL	Ds	L1	L2	L3	fori	viti	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	mm	mm	mm	mm		TCCE	gr	in mm²	
											8.8			
S	MBFXL16041D	Tr16x04	dx	22	45	32	48	10	6	4	M 5	190	1 055,58	0.37
S	MBFXL16041S	Tr16x04 LH	SX	22	45	32	48	10	6	4	M 5	190	1 055,58	0.37
S	MBFXL16082D	Tr16x08 (P4)	dx	22	45	32	48	10	6	4	M 5	190	1 055,58	0.43
S	MBFXL20041D	Tr20x04	dx	30	52	40	60	10	6	5	M 5	370	I 696,46	0.33
S	MBFXL20041S	Tr20x04 LH	SX	30	52	40	60	10	6	5	M 5	370	I 696,46	0.33
S	MBFXL20082D	Tr20x08 (P4)	dx	30	52	40	60	10	6	5	M 5	370	I 696,46	0.35
S	MBFXL25051D	Tr25x05	dx	35	62	48	75	12	6,5	5	M 6	550	2 650,72	0.29
S	MBFXL25051S	Tr25x05 LH	SX	35	62	48	75	12	6,5	5	M 6	550	2 650,72	0.29
S	MBFXL25102D	Tr25×10 (P5)	dx	35	62	48	75	12	6,5	5	M 6	550	2 650,72	0.39
S	MBFXL30061D	Tr30x06	dx	40	68	53	90	12	6,5	5	M 6	790	3 817,04	0.3
S	MBFXL30061S	Tr30x06 LH	SX	40	68	53	90	12	6,5	5	M 6	790	3 817,04	0.3
S	MBFXL30122D	Tr30x12 (P6)	dx	40	68	53	90	12	6,5	5	M 6	790	3 817,04	0.39
S	MBFXL35061D	Tr35x06	dx	50	78	63	105	12	6,5	6	M6	1250	5 257,05	0.3
S	MBFXL35061S	Tr35x06 LH	SX	50	78	63	105	12	6,5	6	M6	1250	5 257,05	0.3
S	MBFXL40071D	Tr40x07	dx	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.28
S	MBFXL40071S	Tr40x07 LH	sx	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.28
S	MBFXL40142D	Tr40x14 (P7)	dx	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.38
S	MBFXL50081D	Tr50x08	dx	65	100	80	150	15	9	6	M 8	2830	10 838,49	0.25
S	MBFXL50081S	Tr50x08 LH	sx	65	100	80	150	15	9	6	M 8	2830	10 838,49	0.25

Stock disponibile a magazzino



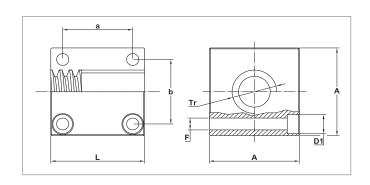
Madreviti bronzo CuSn12 Gamma Quadre MBQ

Caratteristiche Tee	cniche					
Materia prima	Bronzo CuSn12 UNI 7013-72					
Principi di filetto	I - 2					
Tolleranze boccola						
A	h9					
L	± 0,1 mm					

Indicata per azioni di manovra. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	Α	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
S	MBQ1604ID	Tr16x04	dx	35	40	380	879.65	0.37
S	MBQ1604IS	Tr16x04 LH	sx	35	40	380	879.65	0.37
S	MBQ16082D	Tr16x08 (P4)	dx	35	40	380	879.65	0.43
S	MBQ2004ID	Tr20x04	dx	40	50	588	1413.72	0.33
S	MBQ2004IS	Tr20x04 LH	sx	40	50	588	1413.72	0.33
S	MBQ20082D	Tr20x08 (P4)	dx	40	50	588	1413.72	0.35
S	MBQ25051D	Tr25x05	dx	45	55	777	1943.86	0.29
S	MBQ25051S	Tr25x05 LH	sx	45	55	777	1943.86	0.29
S	MBQ25102D	Tr25×10 (P5)	dx	45	55	777	1943.86	0.39
S	MBQ30061D	Tr30x06	dx	50	60	985	2544.69	0.3
S	MBQ30061S	Tr30x06 LH	sx	50	60	985	2544.69	0.3
S	MBQ30122D	Tr30×12 (P6)	dx	50	60	985	2544.69	0.39
S	MBQ4007ID	Tr40x07	dx	60	75	1665	4300.05	0.28
S	MBQ40071S	Tr40x07 LH	sx	60	75	1665	4300.05	0.28
S	MBQ40142D	Tr40×14 (P7)	dx	60	75	1665	4300.05	0.38

S Stock disponibile a magazzino



Madreviti bronzo CuSn12 Gamma Quadre Preforate MBQF

Caratteristiche Tecniche Materia prima Bronzo CuSn12 UNI 7013-72 Principi di filetto I - 2 Tolleranze boccola A h9 L ± 0,1 mm

Indicata per azioni di manovra. Preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	A mm	L mm	a mm	b mm	D1 viti TCCE 8.8	massa gr	Superficie di supporto in mm²	Rendimento dinamico
S	MBQFI604ID	Tr16x04	dx	35	40	26	24	M5	350	879.65	0.37
S	MBQF16041S	Tr16x04 LH	sx	35	40	26	24	M5	350	879.65	0.37
S	MBQF16082D	Tr16x08 (P4)	dx	35	40	26	24	M5	350	879.65	0.43
S	MBQF20041D	Tr20x04	dx	40	50	38	28	M6	588	1413.72	0.33
S	MBQF20041S	Tr20x04 LH	SX	40	50	38	28	M6	588	1413.72	0.33
S	MBQF20082D	Tr20x08 (P4)	dx	40	50	38	28	M6	588	1413.72	0.35
S	MBQF25051D	Tr25×05	dx	45	55	40	33	M6	777	1943.86	0.29
S	MBQF25051S	Tr25x05 LH	sx	45	55	40	33	M6	777	1943.86	0.29
S	MBQF25102D	Tr25×10 (P5)	dx	45	55	40	33	M6	777	1943.86	0.39
S	MBQF30061D	Tr30x06	dx	50	60	49	38	M6	985	2544.69	0.3
S	MBQF30061S	Tr30x06 LH	sx	50	60	49	38	M6	985	2544.69	0.3
S	MBQF30122D	Tr30×12 (P6)	dx	50	60	49	38	M6	985	2544.69	0.39
S	MBQF40071D	Tr40x07	dx	60	75	55	49	M8*	1665	4300.05	0.28
S	MBQF40071S	Tr40x07 LH	sx	60	75	55	49	M8*	1665	4300.05	0.28
S	MBQF40142D	Tr40x14 (P7)	dx	60	75	55	49	M8*	1665	4300.05	0.38

(*) viti di fissaggio TCCE speciali incluse

Stock disponibile a magazzino

Madreviti in lega di rame

Caratteristiche costruttive e prestazionali

Madreviti in bronzo industriale con zinco e piombo con filettatura Trapezoidale. La filettatura è ottenuta per asportazione di truciolo, con speciale processo a garanzia dell'assenza di "vibrazione" sul filetto e con smussatura degli spigoli dei filetti. Raccomandate per azioni di movimentazione carichi non elevati a basse velocità. Buona resistenza all'usura in applicazioni non gravose. **Durezza 65-80 gradi HB**. Soluzione economica con valido compromesso fra prestazioni e costo.

Impieghi consigliati

Gamma MLRC

Madreviti di forma cilindrica. Lunghezza della parte filettata dimensionata per azioni di manovra. Idonea all'inserimento e blocco all'interno di tubi o strutture cave.

Gamma MLRF

Madreviti flangiate preforate per fissaggio con viti di tipo TCCE. Utilizzo flessibile e montaggio veloce.

Gamma MLRF XL

Madreviti flangiate con lunghezza maggiorata della parte filettata. Superiore resistenza all'usura grazie alla maggior superficie di appoggio dei fianchi filetto.

Gamma MLRQ

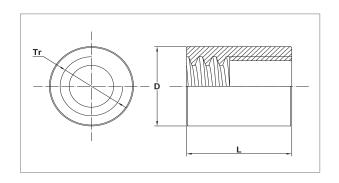
Madreviti di forma quadra parallelepipeda. Lunghezza della parte filettata dimensionata per azioni di manovra. Idonea all'inserimento e blocco all'interno di strutture.

Caratteristiche meccaniche materia prima

Bronzo CuSn5Zn5Pb5 DIN 17656

Bronzo con stagno, zinco e piombo al 5%. Buone proprietà di durezza e resistenza all'usura da strisciamento. Il contenuto di Pb resta entro i limiti previsti dalla normativa sulla limitazione delle sostanze pericolose all'interno delle apparecchiature elettriche ed elettroniche.

Dati Tecnici	Gamme MLRC - MLRF - MLRFXL MLRQ
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	I - 2
Diametri disponibili:	
l principio	12 - 40 mm
2 principi	12 - 40 mm
Passi disponibili:	
l principio	3 - 7 mm
2 principi	6 - 14 mm
Senso di rotazione:	
I principio	destro e sinistro
2 principi	destro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,10 mm
tolleranza radiale standard	da 0,10 mm a 0,30 mm in progressione sui
	diametri



Madreviti lega di rame Gamma Cilindriche MLRC

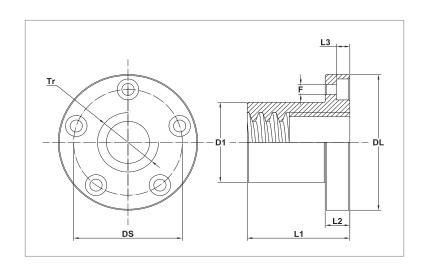
Caratteristiche Tecniche									
Materia prima	Bronzo CuSn5Zn5Pb5 DIN 17656								
Principi di filetto	I - 2								
Tolleranze boccola									
D	h7								
L	± 0,1 mm								

Indicata per azioni di manovra ad usura moderata. Idonea all'inserimento e blocco all'interno di tubi o strutture cave. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
	MLRC12031D	Tr12x03	dx	30	28	158	461.81	0.35
R	MLRC12031S	Tr12x03 LH	sx	30	28	158	461.81	0.35
	MLRC12062D	Tr12x06 (P3)	dx	30	28	158	461.81	0.39
R	MLRC14041D	Tr14x04	dx	30	28	152	527.79	0.37
	MLRC14041S	Tr14X04 LH	sx	30	28	152	527.79	0.37
R	MLRC14082D	Tr14x08 (P4)	dx	30	28	152	527.79	0.49
	MLRC16041D	Tr16x04	dx	36	32	252	703.72	0.37
R	MLRC16041S	Tr16x04 LH	sx	36	32	252	703.72	0.37
	MLRC16082D	Tr16x08 (P4)	dx	36	32	252	703.72	0.43
R	MLRC18041D	Tr18x04	dx	36	36	270	904.78	0.34
	MLRC18041S	Tr18x04 LH	sx	36	36	270	904.78	0.34
R	MLRC18082D	Tr18x08 (P4)	dx	36	36	270	904.78	0.37
	MLRC20041D	Tr20x04	dx	40	40	367	904.78	0.33
R	MLRC20041S	Tr20x04 LH	sx	40	40	367	904.78	0.33
R	MLRC20082D	Tr20x08 (P4)	dx	40	40	367	904.78	0.35
R	MLRC22051D	Tr22x05	dx	40	40	352	1225,22	0.29
R	MLRC22051S	Tr22x05 LH	sx	40	40	352	1225,22	0.29
R	MLRC22102D	Tr22x10 (P5)	dx	40	40	352	1225,22	0.39
	MLRC25051D	Tr25x05	dx	45	48	524	1696,46	0.29
R	MLRC25051S	Tr25x05 LH	sx	45	48	524	1696,46	0.29
	MLRC25102D	Tr25×10 (P5)	dx	45	48	524	1696,46	0.39
R	MLRC30061D	Tr30x06	dx	50	60	780	2544,69	0.28
R	MLRC30061S	Tr30x06 LH	sx	50	60	780	2544,69	0.28
R	MLRC30122D	Tr30x12 (P6)	dx	50	60	780	2544,69	0.39
	MLRC40071D	Tr40x07	dx	60	80	1185	4586,73	0.3
R	MLRC40071S	Tr40x07 LH	sx	60	80	1185	4586,73	0.3
	MLRC40142D	Tr40×14 (P7)	dx	60	80	1185	4586,73	0.38

S Stock disponibile a magazzino

R Disponibile su richiesta



Madreviti lega di rame Gamma Flangiate MLRF

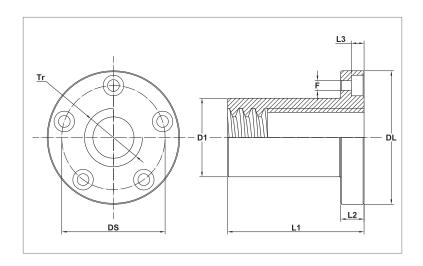
Caratteristiche Tecniche									
Materia prima	Bronzo CuSn5Zn5Pb5 DIN 17656								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h7								
DL, DS, L1, L2, L3	± 0,1 mm								

Indicata per azioni di manovra ad usura moderata, flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1	DL	Ds	L1	L2	L3	fori	viti TCCE	massa	Superficie di supporto in mm²	Rendimento dinamico
	Articolo			mm	mm	mm	mm	mm	mm		8.8	gr	111 111111	
R	MLRFI203ID	Tr12x03	dx	18	37	26	22	8	5	4	M 4	250	362.85	0.35
R	MLRF12031S	Tr12x03 LH	sx	18	37	26	22	8	5	4	M 4	250	362.85	0.35
R	MLRF12062D	Tr12x06 (P3)	dx	18	37	26	22	8	5	4	M 4	250	362,85	0.39
R	MLRF14041D	Tr14x04	dx	20	42	30	25	10	6	4	M 5	245	471.23	0.37
R	MLRF14041S	Tr14X04 LH	sx	20	42	30	25	10	6	4	M 5	245	471.23	0.37
R	MLRF14082D	Tr14x08 (P4)	dx	20	42	30	25	10	6	4	M 5	245	471.23	0.49
R	MLRF16041D	Tr16x04	dx	22	45	32	30	10	6	4	M 5	230	659.73	0.37
R	MLRF16041S	Tr16x04 LH	SX	22	45	32	30	10	6	4	M 5	230	659.73	0.37
R	MLRF16082D	Tr16x08 (P4)	dx	22	45	32	30	10	6	4	M 5	230	659.73	0.43
R	MLRF18041D	Tr18x04	dx	25	48	35	35	10	6	4	M 5	220	879.64	0.34
R	MLRF18041S	Tr18x04 LH	sx	25	48	35	35	10	6	4	M 5	220	879.64	0.34
R	MLRF18082D	Tr18x08 (P4)	dx	25	48	35	35	10	6	4	M 5	220	879.64	0.37
R	MLRF20041D	Tr20x04	dx	30	52	40	40	10	6	5	M 5	300	1130.97	0.33
R	MLRF20041S	Tr20x04 LH	sx	30	52	40	40	10	6	5	M 5	395	1130.97	0.33
R	MLRF20082D	Tr20x08 (P4)	dx	30	52	40	40	10	6	5	M 5	300	1130.97	0.35
R	MLRF22051D	Tr22x05	dx	30	52	40	40	10	6	5	M 5	285	1225.22	0.29
R	MLRF22051S	Tr22x05 LH	sx	30	52	40	40	10	6	5	M 5	280	1225.22	0.29
R	MLRF22102D	Tr22x10 (P5)	dx	30	52	40	40	10	6	5	M 5	285	1225.22	0.39
R	MLRF25051D	Tr25x05	dx	35	62	48	45	12	6,5	6	M 6	400	1590.43	0.29
R	MLRF25051S	Tr25x05 LH	sx	35	62	48	45	12	6,5	6	M 6	395	1590.43	0.29
R	MLRF25102D	Tr25×10 (P5)	dx	35	62	48	45	12	6,5	6	M 6	400	1590.43	0.39
R	MLRF30061D	Tr30x06	dx	40	68	53	50	12	6,5	6	M 6	360	2002.76	0.28
R	MLRF30061S	Tr30x06 LH	sx	40	68	53	50	12	6,5	6	M 6	360	2002.76	0.28
R	MLRF30122D	Tr30x12 (P6)	dx	40	68	53	50	12	6,5	6	M 6	520	2120.57	0.39
R	MLRF40071D	Tr40x07	dx	40	68	53	50	12	6,5	6	M 6	520	2120.57	0.3
R	MLRF40071S	Tr40x07 LH	sx	40	68	53	50	12	6,5	6	M 6	515	2120.57	0.3
R	MLRF40142D	Tr40x14 (P7)	dx	55	84	68	65	12	6,5	6	M 6	800	3726.71	0.38

S Stock disponibile a magazzino

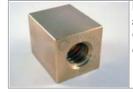
R Disponibile su richiesta



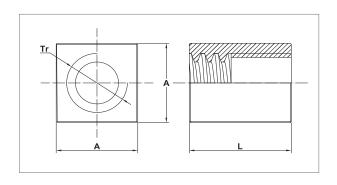
Madreviti lega di rame Gamma Flangiate extra long

Caratteristiche Tecniche									
Materia prima	Bronzo CuSn5Zn5Pb5 DIN 17656								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h7								
DL,DS,L1,L2,L3	± 0,1 mm								

Indicata per azioni di manovra ad usura moderata e movimentazioni ripetute. Flangia preforata per montaggio con viti TCCE.


	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE	massa gr	Superficie di supporto in mm²	Rendimento dinamico
	Articolo										8.8	δ'		
R	MLRFXL16041D	Tr16x04	dx	22	45	32	48	10	6	4	M 5	190	I 055,58	0.37
R	MLRFXL16041S	Tr16x04 LH	sx	22	45	32	48	10	6	4	M 5	190	1 055,58	0.37
R	MLRFXL16082D	Tr16x08 (P4)	dx	22	45	32	48	10	6	4	M 5	190	1 055,58	0.43
R	MLRFXL20041D	Tr20x04	dx	30	52	40	60	10	6	5	M 5	370	I 696,46	0.33
R	MLRFXL20041S	Tr20x04 LH	SX	30	52	40	60	10	6	5	M 5	370	I 696,46	0.33
R	MLRFXL20082D	Tr20x08 (P4)	dx	30	52	40	60	10	6	5	M 5	370	I 696,46	0.35
R	MLRFXL25051D	Tr25x05	dx	35	62	48	75	12	6,5	6	M 6	550	2 650,72	0.29
R	MLRFXL25051S	Tr25x05 LH	SX	35	62	48	75	12	6,5	6	M 6	550	2 650,72	0.29
R	MLRFXL25102D	Tr25×10 (P5)	dx	35	62	48	75	12	6,5	6	M 6	550	2 650,72	0.39
R	MLRFXL30061D	Tr30x06	dx	40	68	53	90	12	6,5	6	M 6	790	3 817,04	0.3
R	MLRFXL30061S	Tr30x06 LH	sx	40	68	53	90	12	6,5	6	M 6	790	3 817,04	0.3
R	MLRFXL30122D	Tr30×12 (P6)	dx	40	68	53	90	12	6,5	6	M 6	790	3 817,04	0.39
R	MLRFXL40071D	Tr40x07	dx	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.28
R	MLRFXL40071S	Tr40x07 LH	SX	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.28
R	MLRFXL40142D	Tr40x14 (P7)	dx	55	84	68	120	12	6,5	6	M 6	1750	6 880,09	0.38

S Stock disponibile a magazzino



Madreviti lega di rame Gamma Quadre MLRQ

Caratteristiche Tecniche								
Materia prima	Bronzo CuSn5Zn5Pb5 DIN 17656							
Principi di filetto	I - 2							
Tolleranze boccola								
Α	h9							
L	± 0,1 mm							

Indicata per azioni di manovra ad usura moderata. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	Α	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
R	MLRQ16041D	Tr16x04	dx	35	40	380	879.65	0.37
R	MLRQ16041S	Tr16x04 LH	sx	35	40	380	879.65	0.37
R	MLRQ16082D	Tr16x08 (P4)	dx	35	40	380	879.65	0.43
R	MLRQ20041D	Tr20x04	dx	40	50	588	1413.72	0.33
R	MLRQ20041S	Tr20x04 LH	SX	40	50	588	1413.72	0.33
R	MLRQ20082D	Tr20x08 (P4)	dx	40	50	588	1413.72	0.35
R	MLRQ25051D	Tr25x05	dx	45	55	777	1943.86	0.29
R	MLRQ25051S	Tr25x05 LH	sx	45	55	777	1943.86	0.29
R	MLRQ25102D	Tr25×10 (P5)	dx	45	55	777	1943.86	0.39
R	MLRQ30061D	Tr30x06	dx	50	60	985	2544.69	0.3
R	MLRQ30061S	Tr30x06 LH	SX	50	60	985	2544.69	0.3
R	MLRQ30122D	Tr30×12 (P6)	dx	50	60	985	2544.69	0.39
R	MLRQ4007ID	Tr40×07	dx	60	75	1665	4300.05	0.28
R	MLRQ40071S	Tr40x07 LH	SX	60	75	1665	4300.05	0.28
R	MLRQ40142D	Tr40×14 (P7)	dx	60	75	1665	4300.05	0.38

S Stock disponibile a magazzino

R Disponibile su richiesta

Madreviti in bronzo alluminio

Caratteristiche costruttive e prestazionali

Madreviti in bronzo-alluminio con filettatura Trapezoidale. La filettatura è ottenuta per asportazione di truciolo, con speciale processo a garanzia dell'assenza di "vibrazione" sul filetto e con smussatura degli spigoli dei filetti. Elevatissima resistenza all'usura in applicazioni gravose. Durezza 170-200 gradi HB. Soluzione indicata per movimentazioni di carichi elevati sia in esercizio intermittente che continuo e con fattori di usura elevati.

Impieghi consigliati

Gamma MBALF

Madreviti flangiate preforate per fissaggio con viti TCCE. Utilizzo flessibile e montaggio veloce. Ottimo compromesso fra buoni valori di rendimento e straordinarie proprietà di durezza e resistenza ad usura della madrevite. Si raccomanda di utilizzare viti di fissaggio in classe 8.8.

Gamma MBALXL

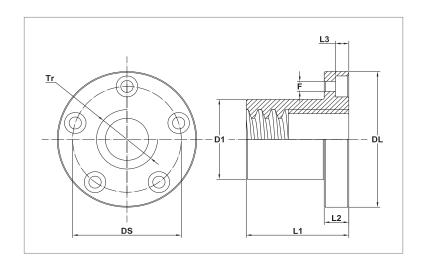
Madreviti flangiate con lunghezza maggiorata della parte filettata. Superiore resistenza all'usura grazie alla maggior superficie di contatto filetti. Utilizzo consigliato per azioni di manovra e movimentazione con carichi elevati , a medie velocità, in esercizio continuo e ad elevata usura. Si raccomanda di utilizzare viti di fissaggio in classe 8.8.

Caratteristiche meccaniche materia prima

Bronzo Alluminio XANTAL Cu All IFe4Ni4 UNI 5275

Bronzo con alluminio all'11% in lega con ferro e nickel. Notevole resistenza meccanica ed alla corrosione. Soluzione altamente performante per la resistenza ad usura, mantenendo buoni valori di rendimento. Ciclo produttivo gestito con certificazioni di colata a garanzia della purezza della lega utilizzata.

Dati Tecnici	Gamme MBALF - MBALFXL
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	1
Diametri disponibili:	
MBALF	16 - 25 mm
MBALF XL	30 - 50 mm
Passi disponibili:	
MBALF	4 - 5 mm
MBALF XL	6 - 8 mm
Senso di rotazione:	destro e sinistro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,10 mm
tolleranza radiale standard	da 0,10 mm a 0,30 in progressione sui diametri



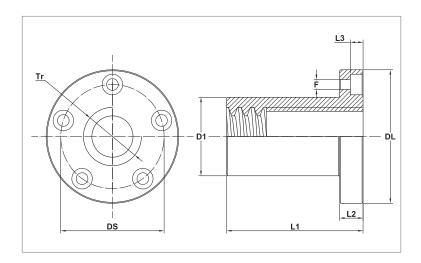
Madreviti in bronzo alluminio Gamma Flangiate MBALF

Caratteristiche Tecniche								
Materia prima	Bronzo Alluminio XANTAL Cu AII I Fe4Ni4							
Principi di filetto	I							
Tolleranze boccola								
DI	h7							
DL,DS,L1,L2,L3	± 0,1 mm							

Indicata per azioni di manovra, pesante. Flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE	massa gr	Superficie di supporto in mm²
S	MBALF16041D	Tr16x04	dx	22	45	32	30	10	6	4	8.8 M 5	230	659.73
S	MBALF16041S	Tr16x04 LH	sx	22	45	32	30	10	6	4	M 5	230	659.73
S	MBALFI804ID	Tr18x04	dx	25	48	35	35	10	6	4	M 5	220	879.64
S	MBALF18041S	Tr18x04 LH	sx	25	48	35	35	10	6	4	M 5	220	879.64
S	MBALF20041D	Tr20×04	dx	30	52	40	40	10	6	5	M 5	300	1130.97
S	MBALF20041S	Tr20x04 LH	sx	30	52	40	40	10	6	5	M 5	395	1130.97
S	MBALF25051D	Tr25×05	dx	35	62	48	45	12	6.5	5	M 6	400	1590.43
S	MBALF25051S	Tr25×05 LH	sx	35	62	48	45	12	6.5	5	M 6	395	1590.43

S Stock disponibile a magazzino



Madreviti in bronzo alluminio Gamma Flangiate extra long

Caratteristiche Tecniche								
Materia prima	Bronzo Alluminio XANTAL Cu AII I Fe4Ni4							
Principi di filetto	I							
Tolleranze boccola								
DI	h7							
DL,DS,L1,L2,L3	± 0,1 mm							

Indicata per azioni di manovra pesante e movimentazione con carichi elevati, flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE	massa gr	Superficie di supporto in mm²
											8.8		
	MBALFXL30061D	Tr30x06	dx	40	68	53	90	18	6.5	6	M 6	710	3817,04
R	MBALFXL30061S	Tr30x06 LH	sx	40	68	53	90	18	6.5	6	M 6	710	3817,04
	MBALFXL35061D	Tr35x06	dx	50	78	63	105	20	6.5	6	M 8	1220	3817,04
R	MBALFXL35061S	Tr35x06 LH	sx	50	78	63	105	20	6.5	6	M 8	1220	3817,04
	MBALFXL40071D	Tr40x07	dx	55	84	68	120	25	9	6	M 8	1630	6880,09
R	MBALFXL40071S	Tr40x07 LH	sx	55	84	68	120	25	9	6	M 8	1630	6880,09
	MBALFXL50081D	Tr50x08	dx	65	100	80	150	30	10.5	6	M 10	2580	10838,49
R	MBALFXL50081S	Tr50x08 LH	sx	65	100	80	150	30	10.5	6	M 10	2580	10838,49

S Stock disponibile a magazzino

Madreviti in acciaio inox

Caratteristiche costruttive e prestazionali

Madreviti in acciaio inossidabile con filettatura Trapezoidale. La filettatura è ottenuta per asportazione di truciolo, con speciale processo a garanzia dell'assenza di "vibrazione" sul filetto e con smussatura degli spigoli dei filetti. L'inox AlSI303 è indicato per utilizzi non soggetti a particolari condizioni critiche di corrosione . L'inox AlSI304 è indicato per utilizzi esposti a corrosione naturale e applicazioni con moderate condizioni di corrosione chimica ed ossidazione.

Impieghi consigliati

Gamma MIC303

Madreviti cilindriche in acciaio AlSI303. Indicate per azioni di manovra e serraggio in applicazioni con moderate condizioni di corrosione ed ed aggressione di agenti chimici ed ossidanti.

Gamma MIC304

Madreviti cilindriche in acciaio AlSI304. Indicate per azioni di manovra e serraggio in applicazioni con severe condizioni di corrosione ed ed aggressione di agenti chimici ed ossidanti.

Gamma MIE303

Madreviti di forma esagonale in acciaio AISI303. Indicate per azioni di manovra e serraggio manuale con chiave in applicazioni che presentano moderate condizioni di corrosione ed aggressione di agenti chimici ed ossidanti.

Gamma MIE304

Madreviti di forma esagonale in acciaio AISI304. Indicate per azioni di manovra e serraggio manuale con chiave con severe condizioni di corrosione ed ed aggressione di agenti chimici ed ossidanti.

Inox system

Le gamme MIC e MIE sono indicate per essere accoppiate a viti rullate in acciaio Inox. Questa rappresenta un'ottima soluzione per serraggi in ambienti esposti agli agenti atmosferici.

Caratteristiche meccaniche materia prima

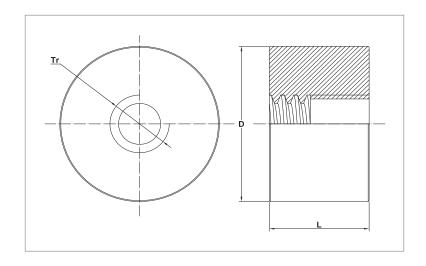
Inox 1.4305 AISI 303

Acciaio austenitico X8 CrNiS18-09. Ottima lavorabilità. Buona resistenza ai fattori atmosferici.

Inox 1,4301 AISI 304

Acciaio austenitico X5 CrNi18-10. Ottima lavorabilità. Ottima resistenza ai fattori atmosferici, buona resistenza agli agenti ossidanti e corrosivi.

Dati Tecnici	Gamme MIC303-MIC304-MIE303 MIE304
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	1
Diametri disponibili:	
MIC303 - MIC304	12 - 60 mm
MIE303 - MIE304	16 - 50 mm
Passi disponibili:	
MIC303 - MIC304	3 - 9 mm
MIE303 - MIE304	4 - 8 mm
Senso di rotazione:	destro e sinistro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,25 mm
tolleranza radiale standard	0,30 mm



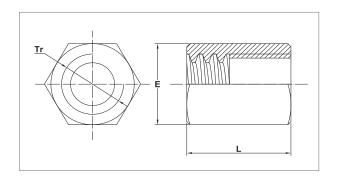
Madreviti acciaio inox Aisi303 Gamma Cilindriche MIC303

Caratteristiche Tecniche								
Materia prima	Acciaio Inox 1.4305 AISI 303							
Principi di filetto	I							
Tolleranze boccola								
D	h9							
L	± 0,1 mm							

Indicata per azioni di manovra e serraggio in applicazioni con moderate condizioni di corrosione ed ossidazione. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo	Thetes	VCISO	mm	mm	gr	in mm ²	Nendimento dinamico
R	MIC303 12031D	Tr12x03	dx	30	20	250	593.76	0.34
R	MIC303 12031S	Tr12x03 LH	sx	30	20	250	593.76	0.34
R	MIC303 14041D	Tr14x04	dx	30	20	245	678.58	0.35
R	MIC303 14041S	Tr14X04 LH	sx	30	20	245	678.58	0.35
R	MIC303 16041D	Tr16x04	dx	36	24	230	791.68	0.32
R	MIC303 16041S	Tr16x04 LH	sx	36	24	230	791.68	0.32
R	MIC303 18041D	Tr18x04	dx	36	24	220	904.77	0.32
R	MIC303 18041S	Tr18x04 LH	sx	36	24	220	904.77	0.32
R	MIC303 20041D	Tr20x04	dx	50	30	300	1130.97	0.25
R	MIC303 20041S	Tr20x04 LH	sx	50	30	395	1130.97	0.25
R	MIC303 2505 I D	Tr25x05	dx	50	36	400	1590.43	0.26
R	MIC303 25051S	Tr25x05 LH	SX	50	36	395	1590.43	0.26
R	MIC303 30061D	Tr30x06	dx	70	45	520	2120.57	0.26
R	MIC303 30061S	Tr30x06 LH	sx	70	45	515	2120.57	0.26
R	MIC303 35061D	Tr35x06	dx	70	55	650	2764.6	0.22
R	MIC303 35061S	Tr35x06 LH	sx	70	55	650	2764.6	0.22
R	MIC303 40071D	Tr40x07	dx	80	60	800	3440.04	0.24
R	MIC303 40071S	Tr40x07 LH	sx	80	60	795	3440.04	0.24
R	MIC303 50081D	Tr50x08	dx	80	75	1110	5057.96	0.24
R	MIC303 50081S	Tr50x08 LH	sx	80	75	1110	5057.96	0.24
R	MIC303 60091D	Tr60x09	dx	90	80	1500	6974.33	0.23
R	MIC303 60091S	Tr60x09 LH	sx	90	80	1500	6974.33	0.23

Stock disponibile a magazzino


Madreviti acciaio Inox Aisi303

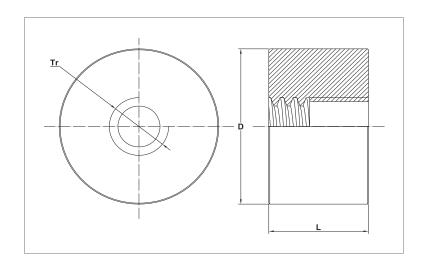
Gamma Esagonali MIE303

Caratteristiche Tecniche								
Materia prima	Acciaio Inox 1.4305 AISI 303							
Principi di filetto	I							
Tolleranze boccola								
Е	h9							
L	± 0,1 mm							

Indicata per azioni di manovra e serraggio manuale con chiave in applicazioni con moderate condizioni di corrosione ed ossidazione.

	Codice Articolo	Filetto	Verso	E mm	L mm	massa gr	Superficie di supporto in mm²	Rendimento dinamico
R	MIE303 16041D	Tr16x04	dx	27	24	230	791.68	0.32
R	MIE303 20041D	Tr20x04	dx	36	30	300	1130.97	0.25
R	MIE303 2505 I D	Tr25x05	dx	46	36	400	1590.43	0.26
R	MIE303 30061D	Tr30x06	dx	46	45	520	2120.57	0.26
R	MIE303 40071D	Tr40x07	dx	80	60	800	3440.04	0.24
R	MIE303 50081D	Tr50x08	dx	80	75	1110	5057.96	0.24

S Stock disponibile a magazzino



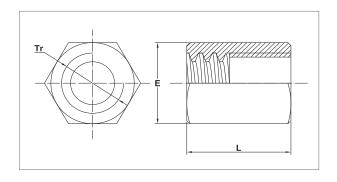
Madreviti acciaio inox Aisi304 Gamma Cilindriche MIC304

Caratteristiche Tecniche					
Materia prima	Inox 1.4301 AISI 304				
Principi di filetto	1				
Tolleranze boccola					
D	h9				
L	± 0,1 mm				

Indicata per azioni di manovra e serraggio in applicazioni con severe condizioni di corrosione ed ossidazione. Comoda per la rilavorazione a disegno.

	Codice	Filetto	Verso		L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
R	MIC304 12031D	Tr12x03	dx	30	20	250	593.76	0.34
R	MIC304 12031S	Tr12x03 LH	sx	30	20	250	593.76	0.34
R	MIC304 14041D	Tr14x04	dx	30	20	245	678.58	0.35
R	MIC304 14041S	Tr14X04 LH	sx	30	20	245	678.58	0.35
R	MIC304 16041D	Tr16x04	dx	36	24	230	791.68	0.32
R	MIC304 16041S	Tr16x04 LH	sx	36	24	230	791.68	0.32
R	MIC304 18041D	Tr18x04	dx	36	24	220	904.77	0.32
R	MIC304 18041S	Tr18x04 LH	sx	36	24	220	904.77	0.32
R	MIC304 2004 I D	Tr20x04	dx	50	30	300	1130.97	0.25
R	MIC304 20041S	Tr20x04 LH	sx	50	30	395	1130.97	0.25
R	MIC304 2505 I D	Tr25x05	dx	50	36	400	1590.43	0.26
R	MIC304 25051S	Tr25x05 LH	sx	50	36	395	1590.43	0.26
R	MIC304 30061D	Tr30x06	dx	70	45	520	2120.57	0.26
R	MIC304 30061S	Tr30x06 LH	sx	70	45	515	2120.57	0.26
R	MIC304 35061D	Tr35x06	dx	70	55	650	2764.6	0.22
R	MIC304 35061S	Tr35x06 LH	sx	70	55	650	2764.6	0.22
R	MIC304 40071D	Tr40x07	dx	80	60	800	3440.04	0.24
R	MIC304 40071S	Tr40x07 LH	sx	80	60	795	3440.04	0.24
R	MIC304 50081D	Tr50x08	dx	80	75	1110	5057.96	0.24
R	MIC304 50081S	Tr50x08 LH	sx	80	75	1110	5057.96	0.24
R	MIC304 60091D	Tr60x09	dx	90	80	1500	6974.33	0.23
R	MIC304 60091S	Tr60x09 LH	sx	90	80	1500	6974.33	0.23

S Stock disponibile a magazzino


Madreviti acciaio inox Aisi304

Gamma Esagonali MIE304

Caratteristiche Tecniche					
Materia prima	Inox 1.4301 AISI 304				
Principi di filetto	1				
Tolleranze boccola					
Е	h9				
L	± 0,1 mm				

Indicata per azioni di manovra e serraggio manuale con chiave in applicazioni con severe condizioni di corrosione ed ossidazione.

	Codice	Filetto	Verso	Е	L	massa	Superficie di supporto	Rendimento dinamico
	Articolo			mm	mm	gr	in mm²	
R	MIE304 16041D	Tr16x04	dx	27	24	230	791.68	0.32
R	MIE304 2004 I D	Tr20x04	dx	36	30	300	1130.97	0.25
R	MIE304 2505 I D	Tr25x05	dx	46	36	400	1590.43	0.26
R	MIE304 30061D	Tr30x06	dx	46	45	520	2120.57	0.26
R	MIE304 4007 I D	Tr40x07	dx	80	60	800	3440.04	0.24
R	MIE304 50081D	Tr50x08	dx	80	75	1110	5057.96	0.24

S Stock disponibile a magazzino

Madreviti in materiali plastici

Caratteristiche costruttive e prestazionali

Madreviti in materiali plastici con filettatura Trapezoidale. Indicate generalmente per azioni di movimentazione e posizionamento ove è richiesto alto rendimento e silenziosità del sistema. Disponibili quattro tipologie di materiali plastici per impieghi con differenti caratteristiche.

Impieghi consigliati

Gamma MPAI C - MAPAI Q

Madreviti in poliammide 6 + olio. Totalmente autolubrificanti. Versione cilindrica e quadra. Buona resistenza all'usura ed ottimo coefficiente di attrito. Indicate per azioni di manovra e movimentazione con basse velocità e carichi medio alti.

Gamma MPA2 FXL

Madreviti flangiate in poliammide 6 + lubrificanti solidi. Buona resistenza all'usura e proprietà autolubrificante. Lunghezza maggiorata. Indicate per movimentazioni anche per viti a due principi.

Gamma MPA3 C

Madreviti cilindriche in poliammide 6 + MoS2. Buona resistenza all'usura con carichi medio bassi. Utilizzo consigliato in ambienti non soggetti ad umidità e con viti rullate di precisione del tipo RATHCP. Richiede lubrificazione.

Gamma MPC- MPCC - MPFXL

Madreviti cilindriche in resina acetalica copolimera POM-C. Materiale che presenta ottimo rendimento, buone proprietà igroscopiche ed autolubrificanti. La versione MPCC è fornita con una prelavorazione per la sede chiavetta e seeger. La versione MPFXL con lunghezza maggiorata della parte filettata trova impiego ideale in azionamenti con esigenze di rendimento e silenziosità.

Caratteristiche meccaniche materia prima

PA6 + olio

Poliammide speciale per caratteristiche di resistenza all'usura da strisciamento. Totalmente autolubrificante.

PA6 + lubrificanti solidi

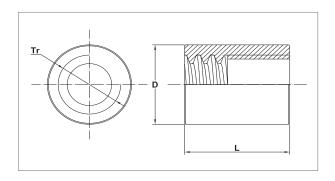
Poliammide ottimo per migliorare il rapporto "P x V".

PA6 + MoS2

Poliammide con buone caratteristiche di resistenza all'usura. Richiede lubrificazione.

Poliacetali (POM-C)

Copolimero acetale con ottime proprietà meccaniche e chimiche. Completamente autolubrificante.

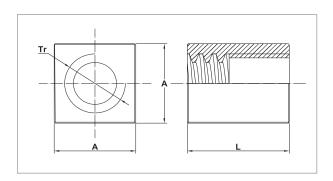

Dati Tecnici	Gamme MPAIC - MPAIQ - MPA2FXL MPA3C - MPC - MPCC
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	1 - 2
Diametri disponibili:	
MPAIC - MPAIQ	20 - 50 mm
MPA2FXL	12 - 40 mm
MPA3C	12 - 40 mm
MPC - MPCC	16 - 22 mm
MPFXL	16 - 40 mm
Passi disponibili:	
I principio	3 - 9 mm
2 principi	6 - 14 mm
Senso di rotazione:	destro e sinistro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,10 mm
tolleranza radiale standard	da 0,10 mm a 0,30 in progressione sui diametri

Madreviti in poliammide Gamma Cilindriche in PA6+olio

Caratteristiche Tecniche					
Materia prima	Poliammide PA6 + olio				
Principi di filetto	1				
Tolleranze boccola					
D	h9				
L	± 0,1 mm				

Buona resistenza all'usura ed ottimo coefficiente di attrito. Indicate per azioni di manovra e movimentazione con basse velocità e carichi medio alti.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto
	Articolo			mm	mm	gr	in mm²
R	MPAIC2004ID	Tr20x04	dx	40	40	60	1130,97
R	MPAIC2004IS	Tr20x04 LH	sx	40	40	60	1130,97
R	MPAIC2505ID	Tr25x05	dx	45	45	75	1590,43
R	MPAIC2505IS	Tr25x05 LH	sx	45	45	75	1590,43
R	MPAIC3006ID	Tr30x06	dx	50	50	110	2120,57
R	MPAIC3006IS	Tr30x06 LH	sx	50	50	110	2120,57
R	MPAIC4007ID	Tr40x07	dx	60	80	270	4586,72
R	MPAIC4007IS	Tr40x07 LH	sx	60	80	279	4586,72
R	MPAIC5008ID	Tr50x08	dx	70	100	410	7225,66
R	MPAIC5008IS	Tr50x08 LH	sx	70	100	410	7225,66

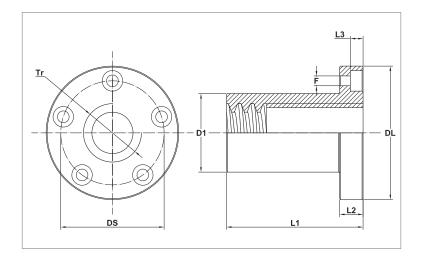

S Stock disponibile a magazzino

Madreviti in poliammide Gamma Quadre in PA6+olio

Caratteristiche Tecniche					
Materia prima	Poliammide PA6 + olio				
Principi di filetto	1				
Tolleranze boccola					
D	h9				
L	± 0,1 mm				

Buona resistenza all'usura ed ottimo coefficiente di attrito. Indicate per azioni di manovra e movimentazione con basse velocità e carichi medio alti.

	Codice	Filetto	Verso	Α	L	massa	Superficie di supporto
	Articolo			mm	mm	gr	in mm²
F	MPQ20041D	Tr20x04	dx	40	60	300	1696,46
F	MPQ20041S	Tr20x04 LH	sx	40	60	395	1696,46
F	MPQ25051D	Tr25x05	dx	40	60	400	2120,57
F	MPQ25051S	Tr25x05 LH	sx	40	60	395	2120,57
F	MPQ30061D	Tr30x06	dx	40	60	520	2544,69
F	MPQ30061S	Tr30x06 LH	SX	40	60	515	2544,69

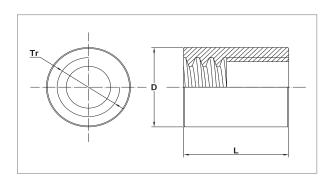

S Stock disponibile a magazzino

Madreviti in poliammide Gamma Flangiate in PA6+lub. solidi

Caratteristiche Tecniche					
Materia prima	Poliammide PA6 + Iubrificanti solidi				
Principi di filetto	I - 2				
Tolleranze boccola					
DI	h9				
DL,DS,L1,L2,L3	± 0,1 mm				

Buona resistenza all'usura e proprietà autolubrificante. Lunghezza maggiorata. Indicate per movimentazioni anche per viti a due principi. Flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE	massa gr	Superficie di supporto in mm²
	711 11 10 10										8.8	δ'	
R	MPA2FXL16041D	Tr16x04	dx	22	45	32	48	16	6	4	M 5	35	1055,58
R	MPA2FXL16041S	Tr16x04 LH	sx	22	45	32	48	16	6	4	M 5	35	1055,58
R	MPA2FXL16082D	Tr16x08 (P4)	dx	22	45	32	48	16	6	4	M 5	35	1055,58
R	MPA2FXL20041D	Tr20x04	dx	30	52	40	60	20	6	5	M 5	68	1696,46
R	MPA2FXL20041S	Tr20x04 LH	sx	30	52	40	60	20	6	5	M 5	68	1696,46
R	MPA2FXL20082D	Tr20x08 (P4)	dx	30	52	40	60	20	6	5	M 5	68	1696,46
R	MPA2FXL25051D	Tr25x05	dx	35	62	48	75	25	6,5	5	M 6	95	2650,72
R	MPA2FXL25051S	Tr25x05 LH	sx	35	62	48	75	25	6,5	5	M 6	95	2650,72
R	MPA2FXL25102D	Tr25×10 (P5)	dx	35	62	48	75	25	6,5	5	M 6	95	2650,72
R	MPA2FXL30061D	Tr30x06	dx	40	68	53	90	30	6,5	5	M 6	140	3817,04
R	MPA2FXL30061S	Tr30x06 LH	sx	40	68	53	90	30	6,5	5	M 6	140	3817,04
R	MPA2FXL30122D	Tr30x12 (P6)	dx	40	68	53	90	30	6,5	5	M 6	140	3817,04
R	MPA2FXL40071D	Tr40x07	dx	55	84	68	120	40	6,5	6	M 6	255	6880,09
R	MPA2FXL40071S	Tr40x07 LH	sx	55	84	68	120	40	6,5	6	M 6	255	6880,09
R	MPA2FXL40142D	Tr40x14 (P7)	dx	55	84	68	120	40	6,5	6	M 6	255	6880,09

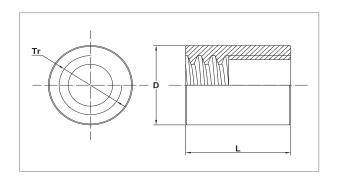

S Stock disponibile a magazzino

Madreviti in poliammide Gamma Cilindriche in PA6+MoS2

Caratteristiche Tecniche					
Materia prima	Poliammide PA6 + MoS2				
Principi di filetto	1				
Tolleranze boccola					
D	h9				
L	± 0,1 mm				

Buona resistenza all'usura con carichi medio bassi. Utilizzo consigliato in ambienti non soggetti ad umidità e con viti rullate di precisione del tipo RATHCP. Richiede lubrificazione.

	Codice	Codice Filetto		Verso D		massa	Superficie di supporto	
	Articolo			mm	mm	gr	in mm²	
R	MPA3C16041D	Tr16x04	dx	36	32	30	703,71	
R	MPA3C16041S	Tr16x04	sx	36	32	30	703,71	
R	MPA3C20041D	Tr20x04	dx	45	40	63	1130.97	
R	MPA3C2004IS	Tr20x04 LH	sx	45	40	63	1130.97	
R	MPA3C25051D	Tr25x05	dx	50	50	90	1767,14	
R	MPA3C25051S	Tr25x05 LH	sx	50	50	90	1767,14	
R	MPA3C30061D	Tr30x06	dx	60	60	155	2544,69	
R	MPA3C30061S	Tr30x06 LH	s×	60	60	155	2544,69	
R	MPA3C4007ID	Tr40x07	dx	80	80	360	4586,72	
R	MPA3C40071S	Tr40x07 LH	sx	80	80	360	4586,72	

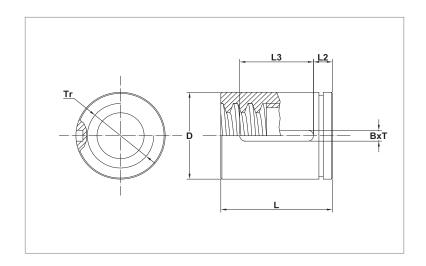

S Stock disponibile a magazzino

Madreviti in poliacetale Gamma Cilindriche MPC

Caratteristiche Tecniche									
Materia prima	Poliacetali (POM-C)								
Principi di filetto	I - 2								
Tolleranze boccola									
D	h9								
L	± 0,1 mm								

Materiale che presenta ottimo rendimento, buone proprietà igroscopiche ed autolubrificanti.

	Codice	Filetto	Verso	D	L	massa	Superficie di supporto
	Articolo			mm	mm	gr	in mm²
R	MPCI604ID	Tr16x04	dx	28	34	27	747,69
R	MPC16041S	Tr16x04 LH	sx	28	34	27	747,69
R	MPC16082D	Tr16x08 (P4)	dx	28	34	27	747,69
R	MPC18041D	Tr18x04	dx	28	34	21	854,51
R	MPC18041S	Tr18x04 LH	SX	28	34	21	854,51
R	MPC18082D	Tr18x08 (P4)	dx	28	34	21	854,51
R	MPC20041D	Tr20x04	dx	32	34	35	961,32
R	MPC20041S	Tr20x04 LH	SX	32	34	35	961,32
R	MPC20082D	Tr20x08 (P4)	dx	32	34	35	961,32
R	MPC22051D	Tr22x05	dx	32	34	30	1041,43
R	MPC22051S	Tr22x05 LH	SX	32	34	30	1041,43
R	MPC22102D	Tr22×10 (P5)	dx	32	34	30	1041,43

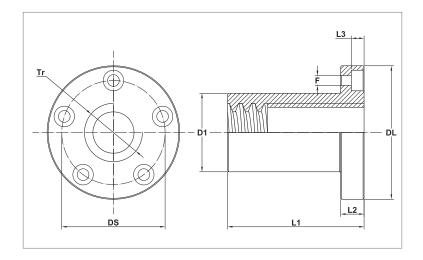

S Stock disponibile a magazzino

Madreviti in poliacetale Gamma Cilindriche MPCC

Caratteristiche Tecniche									
Materia prima	Poliacetali (POM-C)								
Principi di filetto	I - 2								
Tolleranze boccola									
D	h9								
L	± 0,1 mm								

Materiale che presenta ottimo rendimento, buone proprietà igroscopiche ed autolubrificanti. Fornita con una prelavorazione per la sede chiavetta e seeger.

	Codice	Filetto	Verso	D	L	L2	L3	BxT	massa	Superficie di supporto
	Articolo			mm	mm	mm	mm	mm	gr	in mm²
	MPCC16041D	Tr16x04	dx	28	34	7	20	5 x 2.9	27	747,69
R	MPCC16041S	Tr16x04 LH	sx	28	34	7	20	5 x 2.9	27	747,69
	MPCC16082D	Tr16x08 (P4)	dx	28	34	7	20	5 x 2.9	27	747,69
R	MPCC18041D	Tr18x04	dx	28	34	7	20	5 x 2.9	21	854,51
	MPCC18041S	Tr18x04 LH	SX	28	34	7	20	5 x 2.9	21	854,51
R	MPCC18082D	Tr18x08 (P4)	dx	28	34	7	20	5 x 2.9	21	854,51
	MPCC20041D	Tr20x04	dx	32	34	7	20	5 x 2.9	35	961,32
R	MPCC20041S	Tr20x04 LH	sx	32	34	7	20	5 x 2.9	35	961,32
	MPCC20082D	Tr20x08 (P4)	dx	32	34	7	20	5 x 2.9	35	961,32
R	MPCC22051D	Tr22x05	dx	32	34	7	20	5 x 2.9	30	1041,43
	MPCC22051S	Tr22x05 LH	SX	32	34	7	20	5 x 2.9	30	1041,43
R	MPCC22102D	Tr22x10 (P5)	dx	32	34	7	20	5 × 2.9	30	1041,43


S Stock disponibile a magazzino

Madreviti in poliacetale Gamma Flangiate XL

Caratteristiche Tecniche									
Materia prima	Poliacetali (POM-C)								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h9								
DL, DS, L1, L2, L3	± 0,1 mm								

Materiale che presenta ottimo rendimento, buone proprietà igroscopiche ed autolubrificanti. Con lunghezza maggiorata della parte filettata trova impiego ideale in azionamenti con esigenze di rendimento e silenziosità. Flangia preforata per montaggio con viti TCCE.

	Codice Articolo	Filetto	Verso	D1 mm	DL mm	Ds mm	L1 mm	L2 mm	L3 mm	fori	viti TCCE	massa gr	Superficie di supporto in mm²
											8.8		
R	MPFXL16041D	Tr16x04	dx	22	45	32	48	16	5.2	4	M 5	30	1055.58
R	MPFXL16041S	Tr16x04 LH	sx	22	45	32	48	16	5.2	4	M 5	30	1055.58
R	MPFXL16082D	Tr16x08 (P4)	dx	22	45	32	48	16	5.2	4	M 5	30	1055.58
R	MPFXL20041D	Tr20x04	dx	30	52	40	60	20	5.2	5	M 5	57	1696,46
R	MPFXL20041S	Tr20x04 LH	sx	30	52	40	60	20	5.2	5	M 5	57	1696,46
R	MPFXL20102D	Tr20×10 (P5)	dx	35	62	48	75	25	6.5	6	M 6	57	1696,46
R	MPFXL25051D	Tr25×05	dx	35	62	48	75	25	6.5	6	M 6	95	2650.72
R	MPFXL25051S	Tr25x05 LH	sx	35	62	48	75	25	6.5	6	M 6	95	2650.72
R	MPFXL25102D	Tr25×10 (P5)	dx	35	62	48	75	25	6.5	6	M 6	95	2650.72
R	MPFXL30061D	Tr30x06	dx	40	68	53	90	30	6.5	6	M 6	132	3817.04
R	MPFXL30061S	Tr30x06 LH	sx	40	68	53	90	30	6.5	6	M 6	132	3817.04
R	MPFXL40071D	Tr40x07	dx	55	84	68	120	40	6.5	6	M 6	295	6880.09
R	MPFXL40071S	Tr40x07 LH	sx	55	84	68	120	40	6.5	6	M 6	295	6880.09

S Stock disponibile a magazzino

Madreviti Modulari Swap

Caratteristiche costruttive e prestazionali

La madrevite modulare Swap è progettata per differenziare il materiale costruttivo della boccola da quello della parte filettata a contatto con la vite. Sono svincolate le esigenze strutturali della madrevite da quelle di rendimento in azioni di movimentazione e posizionamento. L'interno filettato è disponibile in differenti materiali ed è agevolmente sostituibile quando usurato. Massima solidità ai momenti torcenti garantita dalla qualità del progetto.

Impieghi consigliati

Swap FA B

Madrevite con boccola flangiata in acciaio ed interno filettato in bronzo CuSn12. Indicata per azioni di manovra e movimentazione. Soluzione flessibile ed economica rispetto alle madreviti a tutto materiale in bronzo.

Swap FAP

Madrevite con boccola flangiata in acciaio ed interno filettato in resina acetalica copolimera POM-C autolubrificante. Ottimo rendimento in azioni di movimentazione con bassi carichi ad I e 2 principi.

SWAP FI

Madrevite con boccola flangiata in acciaio Inox Aisi 304 ed interno filettato in materiale plastico. Indicate in accoppiamento con viti in acciaio Inox. L'utilizzo di viti in acciaio inox e madreviti modulari di tipo SWAP FI crea un sistema vite-madrevite completamente resistente all'ossidazione ed alle aggressioni chimiche (Inox System).

SWAPIN

Interni filettati per madreviti Swap. Disponibili in bronzo CuSn12 e materiali plastici differenziati a secondo delle esigenze.

Caratteristiche meccaniche materia prima

Acciaio IISMnPb37 I.0737

Materiale utilizzato per la boccola flangiata Swap FA.

Inox 1.4301 AISI 304

Materiale utilizzato per la boccola flangiata Swap Fl.

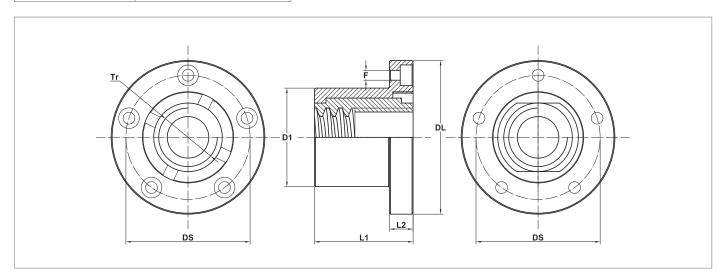
CuSn12 UNI 7013-72

Bronzo utilizzato per l'interno filettato delle Swap FAB.

Poliacetali (POM-C)

Materiale plastico utilizzato per l'interno filettato nelle Swap FAP e Swap FIP.

Dati Tecnici	Gamme Swap FAB-FAP-FIP				
Filettatura	Trapezio DIN 103 ISO 2901-04				
Tolleranza filettatura	7H				
Numero di principi	1 - 2				
Diametri disponibili:					
I principio	16 - 50 mm				
2 principi	16 - 40 mm				
Passi disponibili:					
l principio	4 - 8 mm				
2 principi	8 - 14 mm				
Senso di rotazione:	destro				
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di				
	filettatura 7e (vite) 7H (madrevite)				
tolleranza assiale standard	0,10 mm				
tolleranza radiale standard	da 0,10 mm a 0,30 mm in progressione su				
	diametri				


Swap flangiate acciaio

Gamma FAB: interno filettato bronzo

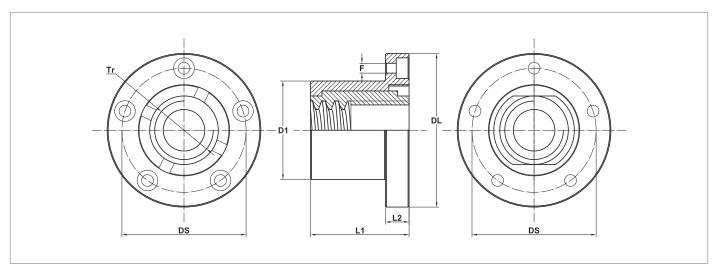
Caratteristiche Tecniche									
Materia prima	Interno filettato in bronzo CuSn12 UNI 7013-72								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h7								
DL, DS, L1, L2, L3	± 0,1 mm								

Indicata per azioni di manovra e movimentazione. Soluzione flessibile ed economica rispetto alle madreviti a tutto materiale in bronzo.

	Codice	Filetto	Verso	DL	D1	L1	DS	L2	fori	viti	ghiera	massa	Superficie di supporto
	Articolo			mm	mm	mm	mm	mm		TCCE		gr	in mm²
										8.8			
S	SWAPFABT16041D	Tr16x04	dx	68	40	40	53	12	5	M 6	M 36×1,5	510	879.65
S	SWAPFABT16082D	Tr16x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36×1,5	510	879.65
S	SWAPFAB T20041D	Tr20x04	dx	68	40	40	53	12	5	M 6	M 36×1,5	500	1130.97
S	SWAPFAB T20082D	Tr20x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36×1,5	510	1130.97
S	SWAPFAB T25051D	Tr25x05	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFABT25102D	Tr25×10 (P5)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFABT30061D	Tr30x06	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFABT30122D	Tr30×12 (P6)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFAB T40071D	Tr40x07	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFAB T40142D	Tr40×14 (P7)	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFABT50081D	Tr50x08	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3020	5780,53

S Stock disponibile a magazzino

R Disponibile su richiesta


Swap flangiate acciaio

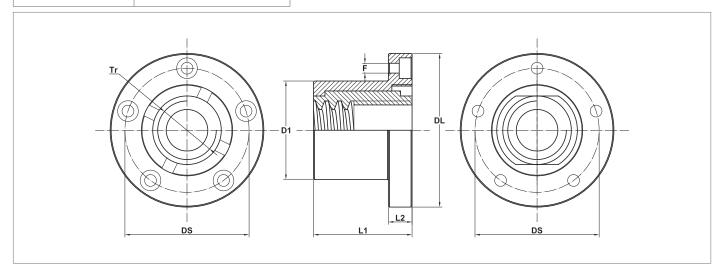
Gamma FAP: interno filettato POM-C

Caratteristiche Tecniche									
Materia prima	Interno filettato in Poliacetale (POM-C)								
Principi di filetto	I - 2								
Tolleranze boccola									
DI	h7								
DL, DS, L1, L2, L3	± 0,1 mm								

Azioni di movimentazione con bassi carichi ad I e 2 principi. Soluzione flessibile ed economica rispetto alle madreviti a tutto materiale in POM-C.

	Codice Articolo	Filetto	Verso	DL mm	D1 mm	L1 mm	DS mm	L2 mm	fori	viti TCCE	ghiera	massa gr	Superficie di supporto in mm²
	CA /A DEA DELCOALD	T 14 04		68	40	40	53	10	-	8.8	Macle	510	070 / 5
S	SWAPFAPT16041D	Tr16x04	dx	68	40	40	55	12	5	M 6	M 36x1,5	510	879.65
S	SWAPFAPT16082D	Tr16x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36x1,5	510	879.65
S	SWAPFAP T20041D	Tr20x04	dx	68	40	40	53	12	5	M 6	M 36x1,5	500	1130.97
S	SWAPFAP T20082D	Tr20x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36x1,5	510	1130.97
S	SWAPFAP T25051D	Tr25x05	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFAP T25102D	Tr25×10 (P5)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFAPT30061D	Tr30x06	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFAPT30122D	Tr30x12 (P6)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFAPT40071D	Tr40x07	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFAPT40142D	Tr40x14 (P7)	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFAPT50081D	Tr50x08	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3020	5780,53

S Stock disponibile a magazzino


Swap flangiate inox AISI304

Gamma FIP: interno filettato POM-C

Caratteristiche Tecniche			
Materia prima	Interno filettato in Poliacetale (POM-C)		
Principi di filetto	I - 2		
Tolleranze boccola			
DI	h7		
DL, DS, L1, L2, L3	± 0,1 mm		

Azioni di movimentazione con bassi carichi ad I e 2 principi. Indicate in accoppiamento con viti in acciaio Inox. Completamente resistente all'ossidazione ed alle aggressioni chimiche (Inox System).

	Codice Articolo	Filetto	Verso	DL mm	D1 mm	L1 mm	DS mm	L2 mm	fori	viti TCCE 8.8	ghiera	massa gr	Superficie di supporto in mm²
S	SWAPFIPT16041D	Tr16x04	dx	68	40	40	53	12	5	M 6	M 36×1,5	510	879.65
S	SWAPFIPT16082D	Tr16x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36×1,5	510	879.65
S	SWAPFIPT20041D	Tr20x04	dx	68	40	40	53	12	5	M 6	M 36×1,5	500	1130.97
S	SWAPFIPT20082D	Tr20x08 (P4)	dx	68	40	40	53	12	5	M 6	M 36x1,5	510	1130.97
S	SWAPFIPT25051D	Tr25x05	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFIPT25102D	Tr25×10 (P5)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	775	1767,15
S	SWAPFIPT30061D	Tr30x06	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFIPT30122D	Tr30×12 (P6)	dx	78	50	50	63	12	6	M 6	M 46 x 1,5	760	2120,58
S	SWAPFIPT40071D	Tr40x07	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFIPT40142D	Tr40×14 (P7)	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3040	4586,73
S	SWAPFIPT50081D	Tr50x08	dx	120	75	80	95	20	6	M 10	M 72 x 1,5	3020	5780,53

S Stock disponibile a magazzino

R Disponibile su richiesta

Madreviti Modulari SwapIn Interni filettati per Swap

Caratteristiche costruttive e prestazionali

Gli interni filettati per madreviti Swap permettono di scegliere il materiale della parte filettata più idoneo all'azione del sistema. Sono disponibili differenti materiali per azioni di manovra e movimentazione. Massima solidità ai momenti torcenti garantita dalla qualità del progetto.

Impieghi consigliati

SwapIN B

Interno filettato in bronzo CuSn12. Indicato per azioni di manovra e movimentazione. Ottima resistenza all'usura offerta dal bronzo CuSn12.

SwapIN P

Interno filettato in resina acetalica copolimera POM-C. Autolubrificante con ottimo rendimento in movimentazioni con bassi carichi ad I e 2 principi.

SwapINP A I

Interno filettato in Poliammide PA6+olio. Autolubrificante. Ottima resistenza ad usura. Indicato per manovra e posizionamento di carichi medio alti a basse velocità.

SwapINP A2

Interno filettato in Poliammide PA6+MoS2. Buona resistenza ad usura. Indicato per manovra e posizionamento di carichi medio bassi in ambienti asciutti. Necessita di lubrificazione.

SwapINP A3

Interno filettato in Poliammide PA6+lubrificanti solidi. Ottimo per miglioramento "P x V". Indicato per viti a due principi. Autolubrificante.

Caratteristiche meccaniche materia prima

CuSn12 UNI 7013-72

Materiale utilizzato per la boccola flangiata Swap FA.

Poliacetale (POM-C)

Materiale plastico utilizzato per gli interni SwapINP

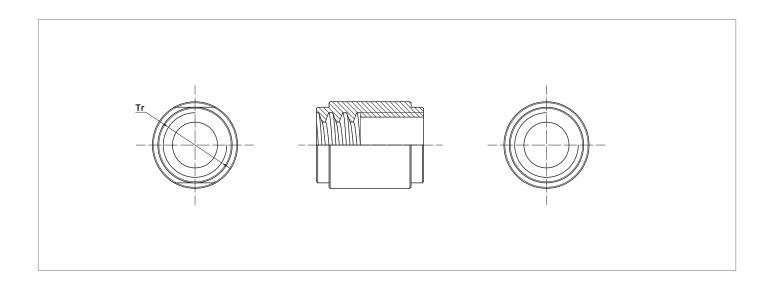
PA6 + olio

Poliammide utilizzata per gli interni SwapINPAI

PA6 + MoS2

Poliammide utilizzata per gli interni SwapINP A2

PA6 + lubrificanti solidi

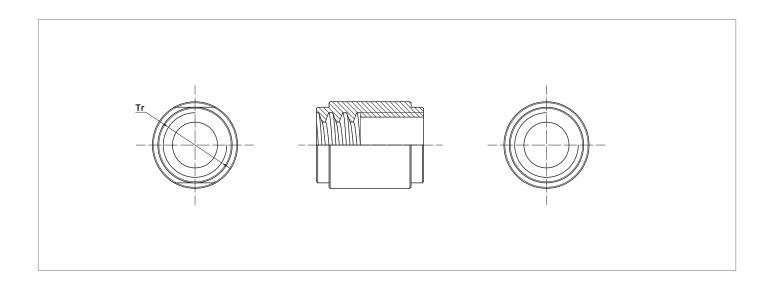

Poliammide utilizzata per gli interni SwapINP A3

Dati Tecnici	Gamme Swap FAB-FAP-FIP
Filettatura	Trapezio DIN 103 ISO 2901-04
Tolleranza filettatura	7H
Numero di principi	1 - 2
Diametri disponibili:	
l principio	16 - 50 mm
2 principi	16 - 40 mm
Passi disponibili:	
I principio	4 - 8 mm
2 principi	8 - 14 mm
Senso di rotazione:	destro
Tolleranze di accoppiamento:	entro i range previsti dalle tolleranze di
	filettatura 7e (vite) 7H (madrevite)
tolleranza assiale standard	0,10 mm
tolleranza radiale standard	da 0,10 mm a 0,30 mm in progressione sui
	diametri

SwapIn: interni filettati Swap SwapINB in bronzo

Caratteristiche Tecniche			
Materia prima	CuSn12 UNI 7013-72		
Principi di filetto	I - 2		
	Indicata per azioni di manovra e movimentazione.		

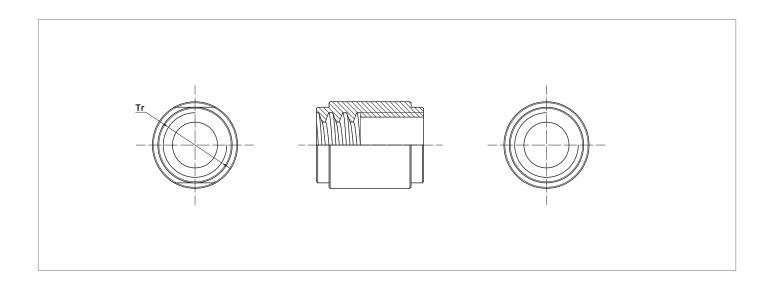
	Codice Filetto		Verso	Superficie di supporto
	Articolo			in mm²
S	SWAPIN BTI604ID	Tr16x04	dx	879.65
S	SWAPIN BT16082D	Tr16x08 (P4)	dx	879.65
S	SWAPIN BT20041D	Tr20x04	dx	1130.97
S	SWAPIN BT20082D	Tr20x08 (P4)	dx	1130.97
S	SWAPIN BT25051D	Tr25x05	dx	1767,15
S	SWAPIN BT25102D	Tr25×10 (P5)	dx	1767,15
S	SWAPIN BT30061D	Tr30x06	dx	2120,58
S	SWAPIN BT30122D	PIN B T30122D Tr30x12 (P6)		2120,58
S	SWAPIN BT40071D	Tr40x07	dx	4586,73
S	SWAPIN BT40142D	Tr40x14 (P7)	dx	4586,73
S	SWAPIN BT50081D	Tr50x08	dx	5780,53


S Stock disponibile a magazzino

R Disponibile su richiesta

SwapIn: interni filettati Swap SwapINP in poliacetale

Caratteristiche Tecniche			
Materia prima	Poliacetale (POM-C)		
Principi di filetto	I - 2		
	Azioni di movimentazione con bassi carichi ad I e 2 principi.		

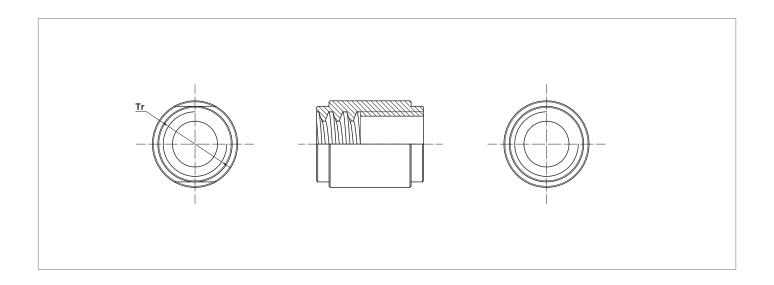

	Codice Articolo	Filetto	Verso	Superficie di supporto in mm²
S	SWAPIN PTI604ID	Tr16x04	dx	879.65
S	SWAPIN PT16082D	Tr16x08 (P4)	dx	879.65
S	SWAPIN PT20041D	Tr20x04	dx	1130.97
S	SWAPIN PT20082D	Tr20x08 (P4)	dx	1130.97
S	SWAPIN PT25051D	Tr25x05	dx	1767,15
S	SWAPIN PT25102D	Tr25×10 (P5)	dx	1767,15
S	SWAPIN PT30061D	Tr30x06	dx	2120,58
S	SWAPIN PT30122D	Tr30x12 (P6)	dx	2120,58
S	SWAPIN PT40071D	Tr40x07	dx	4586,73
S	SWAPIN PT40142D	Tr40x14 (P7)	dx	4586,73
S	SWAPIN PT50081D	Tr50x08	dx	5780,53

S Stock disponibile a magazzino

SwapIn: interni filettati Swap SwapINP in poliammide PA6+olio

Caratteristiche Tecniche			
Materia prima	Poliammide PA6 + olio		
Principi di filetto	I		
90.	Buona resistenza all'usura ed ottimo coefficiente di attrito. Indicate per azioni di manovra e movimentazione con basse velocità e carichi medio alti.		

Codice		Filetto	Verso	Superficie di supporto
	Articolo			in mm²
R	SWAPINPA I T2505 I D	Tr25x05	dx	1767,15
R	SWAPINPA I T3006 I D	Tr30x06	dx	2120,58
R	SWAPINPA I T4007 I D	Tr40x07	dx	4586,73
R	SWAPINPA I T5008 I D	Tr50x08	dx	5780,53

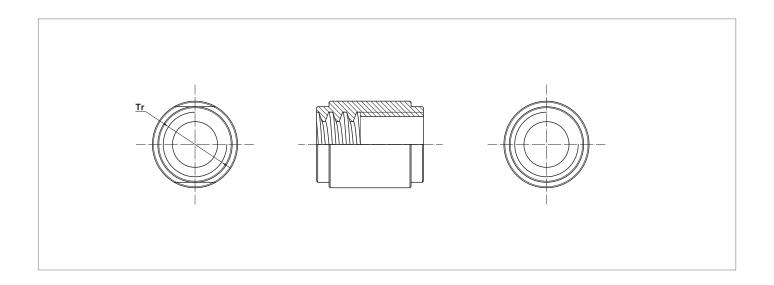

S Stock disponibile a magazzino

R Disponibile su richiesta

SwapIn: interni filettati Swap SwapINP in poliammide PA6+MoS2

Caratteristiche Tecniche			
Materia prima	Poliammide PA6 + MoS2		
Principi di filetto	I		
0.	Buona resistenza all'usura con carichi medio bassi. Utilizzo consigliato in ambienti non soggetti ad umidità e con viti rullate di precisione del tipo RATHCP. Richiede lubrificazione.		

	Codice	Filetto	Verso	Superficie di supporto
	Articolo			in mm²
R	SWAPINPA2T16041D	Tr16x04	dx	879.65
R	SWAPINPA2T2004ID	Tr20x04	dx	1130.97
R	SWAPINPA2 T2505 I D	Tr25x05	dx	1767,15
R	SWAPINPA2T30061D	Tr30x06	dx	2120,58
R	SWAPINPA2T40071D	Tr40x07	dx	4586,73
R	SWAPINPA2T50081D	Tr50x08	dx	5780,53


S Stock disponibile a magazzino

SwapIn: interni filettati Swap

SwapINP in poliammide PA6+lubrificanti solidi

Caratteristiche Tecniche				
Materia prima	Poliammide PA6 + Iubrificanti solidi			
Principi di filetto	2			
0	Buona resistenza all'usura e proprietà autolubrificante. Indicate per movimentazioni per viti a due principi.			

	Codice	Filetto	Verso	Superficie di supporto				
	Articolo			in mm²				
R	SWAPINPA3T16082D	Tr16x08 (P4)	dx	879.65				
R	SWAPINPA3 T20082D	Tr20x08 (P4)	dx	1130.97				
R	SWAPINPA3 T25 I 02D	Tr25×10 (P5)	dx	1767,15				
R	SWAPINPA3 T30122D	Tr30x12 (P6)	dx	2120,58				
R	SWAPINPA3 T40142D	Tr40×14 (P7)	dx	4586,73				

S Stock disponibile a magazzino

R Disponibile su richiesta

Madreviti Modulari T-Nose Nut

Caratteristiche costruttive e prestazionali

Le madreviti di supporto T-Nose sono progettate per offrire un'ampia superficie di appoggio alla flangia di fissaggio. Quest'ultima è realizzata in acciaio con trattamento di brunitura nera. La flangia in acciaio è avvitata alla boccola filettata e bloccata meccanicamente. Ottima alternativa alle madreviti tutto materiale in bronzo per il risparmio di materiale pregiato ove non necessita. Praticità di sostituzione quando usurata. Massima solidità ai momenti torcenti.

Impieghi consigliati

Gamma MTNB

Madrevite di supporto con elemento filettato in bronzo CuSn12 e flangia in acciaio con trattamento di brunitura. La flangia è preforata per alloggiamento viti di fissaggio di tipo TCCE. Bronzo di elevata qualità con ottima resistenza ad usura e durezza pari a 90-100 gradi HB. Soluzione economica e pratica per azioni di manovra e movimentazione di carichi medio elevati a bassa velocità.

Gamma MTNLR

Madrevite di supporto con elemento filettato in lega di rame CuSn5Zn5Pb5 e flangia in acciaio con trattamento di brunitura. La flangia è preforata per alloggiamento viti di fissaggio di tipo TCCE. Bronzo con buona resistenza ad usura e durezza pari a 65-80 gradi HB. Soluzione economica e pratica per azioni di manovra e movimentazione di carichi medio bassi a velocità ridotte.

Caratteristiche meccaniche materia prima

Acciaio IISMnPb37 I.0737

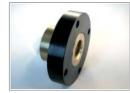
Materiale utilizzato per la flangia avvitabile. Trattamento di brunitura nera.

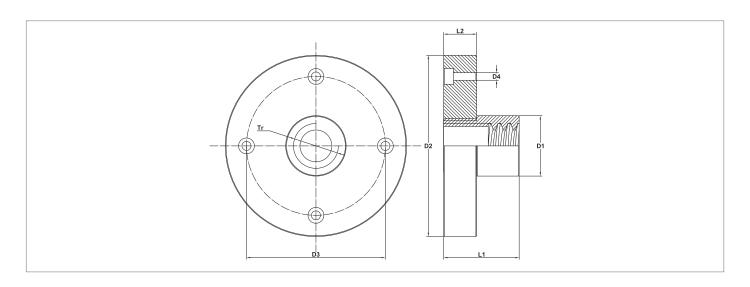
CuSn12 UNI 7013-72

Bronzo utilizzato per le madreviti della linea MTNB

Bronzo CuSn5Zn5Pb5 DIN 17656

Bronzo utilizzato per le madreviti della linea MTNLR


Gamme Swap FAB-FAP-FIP
Trapezio DIN 103 ISO 2901-04
7H
I - 2
20 - 30 mm
20 - 30 mm
4 - 6 mm
8 - 12 mm
destro - sinistro
entro i range previsti dalle tolleranze di
filettatura 7e (vite) 7H(madrevite)
0,10 mm
da 0,10 mm a 0,30 mm in progressione sui
diametri


T-Nose Nut flangia acciaio

Gamma bronzo CuSn12

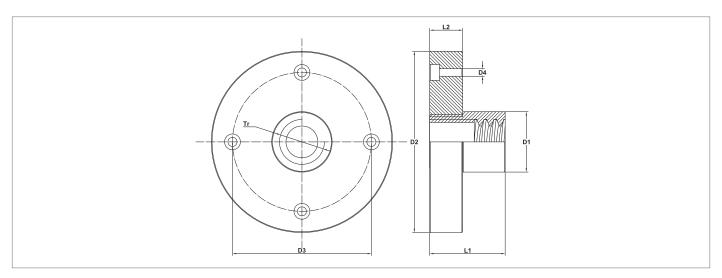
Caratteristiche Tecniche						
Materia prima	CuSn12 UNI 7013-72					
Principi di filetto	I - 2					
Tolleranze boccola						
DI	h7					
D2, D3, L1, L2, D4	± 0,1 mm					

Soluzione economica e pratica per azioni di manovra e movimentazione di carichi medio elevati a bassa velocità.

	Codice	Filetto	Verso	D1	D2	D3	L1	L2	D4	massa	Superficie di supporto
	Articolo			mm	mm	mm	mm	mm	mm	gr	in mm²
R	MTNB20041D	Tr20x04	dx	28	66	53	32	13,2	6,75	480	723,82
R	MTNB20041S	Tr20x04 LH	sx	28	66	53	32	13,2	6,75	480	723,82
R	MTNB20082D	Tr20x08 (P4)	dx	28	66	53	32	13,2	6,75	480	723,82
R	MTNB25051D	Tr25x05	dx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNB25051S	Tr25x05 LH	sx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNB25102D	Tr25×10 (P5)	dx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNB30061D	Tr30x06	dx	44,5	107	87,4	54	13,2	10	1270	2290,22
R	MTNB30061S	Tr30x06 LH	sx	44,5	107	87,4	54	13,2	10	1270	2290,22
R	MTNB30122D	Tr30x12 (P6)	dx	44,5	107	87,4	54	13,2	10	1270	2290,22

R Disponibile su richiesta

S Stock disponibile a magazzino



T-Nose Nut flangia acciaio Gamma in lega di rame

Caratteristiche Tecniche							
Materia prima	Bronzo CuSn5Zn5Pb5 DIN 17656						
Principi di filetto	I - 2						
Tolleranze boccola							
DI	h7						
D2, D3, L1, L2, D4	± 0,1 mm						

Soluzione economica e pratica per azioni di manovra e movimentazione di carichi medio bassi a velocità ridotte.

	Codice	Filetto	Verso	D1	D2	D3	L1	L2	D4	massa	Superficie di supporto
	Articolo			mm	mm	mm	mm	mm	mm	gr	in mm²
R	MTNLR20041D	Tr20x04	dx	28	66	53	32	13,2	6,75	480	723,82
R	MTNLR20041S	Tr20x04 LH	sx	28	66	53	32	13,2	6,75	480	723,82
R	MTNLR20082D	Tr20x08 (P4)	dx	28	66	53	32	13,2	6,75	480	723,82
R	MTNLR25051D	Tr25x05	dx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNLR25051S	Tr25x05 LH	sx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNLR25102D	Tr25×10 (P5)	dx	38	70	57,4	38	13,2	6,75	600	1343,08
R	MTNLR30061D	Tr30x06	dx	44,5	107	87,4	54	13,2	10	1270	2290,22
R	MTNLR30061S	Tr30x06 LH	sx	44,5	107	87,4	54	13,2	10	1270	2290,22
R	MTNLR30122D	Tr30x12 (P6)	dx	44,5	107	87,4	54	13,2	10	1270	2290,22

S Stock disponibile a magazzino

Personalizzazioni

Lavorazione Terminali Viti

Le viti di manovra vengono fornite alla distribuzione commerciale in soluzione standard, tagliate a misura e con le estremità smussate.

Sono disponibili anche in versione tagliata senza smusso (RATW) con risparmio di costo.

Le viti destinate ad azioni di manovra o movimentazione sono tipicamente azionate mediante una trasmissione di moto rotatorio e necessitano quindi di elementi lavorati per provvedere al loro sostegno mediante cuscinetti, oltre che alla predisposizione per il fissaggio dell'elemento di trasmissione mediante chiavetta.

L'azienda dispone di uno specifi co reparto in grado di effettuare lavorazioni meccaniche a controllo numerico CNC per la realizzazione di torniture, forature, alesature, rettifi che, brocciature e forature profonde.

Sono previste differenti classi di qualità delle lavorazioni e due tipi di predisposizione per chiavetta (italiana e americana).

Rivestimenti superficiali filettature

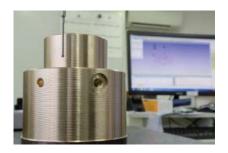
L'esperienza nelle lavorazioni a disegno e nella fornitura di componenti meccanici completi di trattamenti termici, chimici e galvanici, ha sviluppato una competenza nella individuazione e reperimento di fornitori affidabili e professionali.

Nelle viti di manovra e di movimentazione la tematica del rendimento e dell'efficienza del sistema vite-madrevite rappresenta spesso uno scoglio sul quale la progettazione richiede consigli e consulenza.

Le esperienze maturate ci hanno permesso di individuare alcuni tipi di trattamenti superficiali ad alta tecnologia che permettono di ridurre in maniera significativa il coefficiente di attrito fra vite e madrevite.

Le esigenze vengono analizzate singolarmente in base ai dati ed alle caratteristiche del sistema da progettare.

Filettatura Asportata - Fresata


Su richiesta sono fornibili viti di manovra con filettatura ottenuta per asportazione. Quando vi sono esigenze dimensionali legate al diametro dei codoli rispetto al diametro medio del filetto rullato, la filettatura asportata è una scelta obbligata.

Madreviti personalizzate

Le madreviti sono studiate nelle forme e dimensioni per ottimizzare le prestazioni ed agevolare al massimo il montaggio e la manutenzione.

Sono comunque fornibili madreviti con forme e sagomature personalizzate.

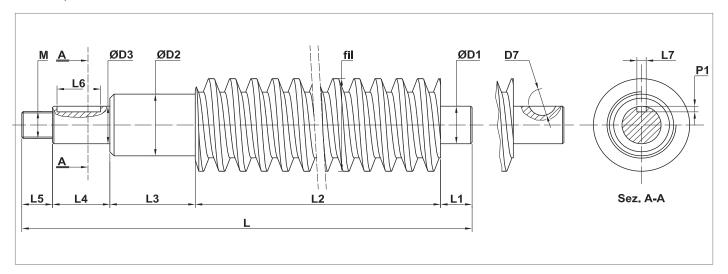
I materiali e le dimensioni possono essere anch'essi defi niti e personalizzati su disegno del Cliente.

Gioco radiale personalizzato

Le caratteristiche della geometria interna della madrevite possono essere personalizzate, in modo da diminuire il gioco radiale a seconda dei criteri di progettazione richiesti dal Cliente.

Rivestimenti superficiali madreviti

Le madreviti in acciaio possono essere fornite con trattamenti superficiali chimici e galvanici (brunitura, nichelatura, zincatura) per aumentare la resistenza agli agenti atmosferici o per migliorarne l'impatto estetico.



Personalizzazioni

Lavorazione Terminali Viti

Sintesi delle lavorazioni tipiche

Il disegno mostra le parti lavorate tipicamente presenti sulle viti di manovra, sorrette con cuscinetti alle estremità ed azionate mediante un elemento per la trasmissione del moto fissato mediante chiavetta.

Tabella delle lunghezze

L	Lunghezza totale
LI	Lunghezza codolo cuscinetti lato supporto
L2	Lunghezza tratto filettato
L3	Lunghezza codolo cuscinetti lato potenza
L4	Lunghezza codolo trasmissione
L5	Lunghezza codolo filettato di chiusura M
L6	Lunghezza chiavetta innesto trasmissione
L7	Larghezza chiavetta ITALIANA innesto trasmissione

Tabella dei diametri

ØDI	Diametro codolo cuscinetti lato supporto
fil	Diametro e passo della filettatura
ØD2	Diametro codolo cuscinetti lato trasmissione
ØD3	Diametro codolo trasmissione
М	Diametro e passo codolo filettato di chiusura
PI	Profondità chiavetta innesto trasmissione

D7 Diametro chiavetta AMERICANA

Tabella codici di lavorazione per differenti qualità di lavorazione e tipologia chiavetta

Codice lavorazione	Classe di qualità lavorazioni	Tipologia chiavetta				
LT01	STANDARD	ITALIANA				
LT02	PRECISIONE	ITALIANA				
LT03	PRECISIONE	AMERICANA				

Tolleranze dimensionali

Le dimensioni delle lunghezze sono tollerate secondo gli scostamenti per dimensioni lineari EN 22768-I e 2 con designazione m (media) e f (fine) per le tolleranze dimensionali e K per le tolleranze geometriche.

	Tolleranze dimensionali per tipologia	LT01	LT02	LT03
LI	Lunghezza codolo cuscinetti lato supporto	f	f	f
L2	Lunghezza tratto filettato	m	m	m
L3	Lunghezza codolo cuscinetti lato potenza	f	f	f
L4	Lunghezza codolo trasmissione	m	f	f
L5	Lunghezza codolo filettato di chiusura M	m	m	m
L6	Lunghezza chiavetta innesto trasmissione	m	f	f
L7	Larghezza chiavetta innesto trasmissione	m	f	f
DI	Diametro codolo cuscinetti lato supporto	h7	j6	j6
D2	Diametro codolo cuscinetti lato trasmissione	h7	j6	j6
R	Rugosità codoli cuscinetti ØD1 - ØD2	Ra 1,6	Ra 0,8	Ra 0,8
D3	Diametro codolo trasmissione	h8	h7	h7
L6	Profondità chiavetta innesto trasmissione	+ 0,1	+ 0,1	+ 0,1

Sotto: esempio di stringa ordinazione

Stringa di ordinazione	L	L1	D1	L2	filetto vite Tr	L3	D2	L4	D3	L5	M	L6	L7	P1
LT01-RAT30061D	1118	20	10	1000	Tr30x06 dx	60	25	40	15	8	10	25	5	5

Accessori

Lubrificantipervitidimanovra

L'esperienza nella fornitura diretta alle aziende costruttrici di sistemi ed automazioni industriali, ha permesso di ricercare prodotti speciali per la lubrifi cazione dei sistemi vite-madrevite.

Nelle viti di manovra una corretta lubrifi cazione è alla base dell'efficienza del sistema ma sopratutto protegge la madrevite dagli effetti degenerativi dell'usura. Nelle azioni di manovra tipicamente vengono utilizzate madreviti in bronzo o lega di rame le quali hanno bisogno di mantenere un basso coeffi ciente di attrito durante lo strisciamento dei fianchi filetto.

E' importante quindi applicare un lubrificante specifi co sulla vite, che permetta di migliorare l'effetto tribologico senza però gravarla di uno spessore di "grasso" che talvolta favorisce l'adesione di particelle estranee, formando una vera e propria pasta abrasiva che aumenta l'usura anzichè preservare la madrevite.

MG - L01

Prodotto lubrificante a base di PTFE con eccellenti proprietà antigrippanti. Applicato puro o diluito con altri prodotti minerali, ha speciali proprietà di efficacia e durata nel tempo.

MG - D01

Prodotto lubrificante a base di PTFE. Indicato per applicazioni soggette a lunghe microvibrazioni. Elevata proprietà lubrificante in grado di prevenire le adesioni di primo stacco (stick slip). Utilissimo per le applicazioni di manovra con viti di ridotto diametro ove è richiesta un'azione silenziosa, e con la possibilità di recupero dei giochi madrevite.

Supporti adattatori per il fissaggio radiale delle madreviti flangiate

Supporti in acciaio brunito per il fissaggio radiale delle madreviti flangiate.

Disponibili differenti dimensioni per ospitare madreviti per viti di manovra trapezoidali nei principali diametri.

Predisposizione di fori per il fissaggio della madrevite e del supporto.

Utilissimi nelle prototipazioni.

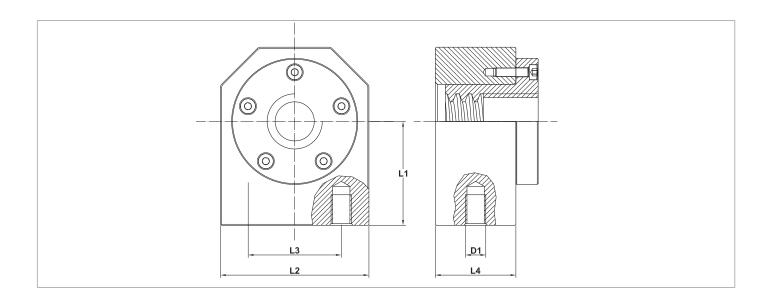
Abbinabili alle madreviti in bronzo ed in acciaio.

71

Accessori Lubrificanti per viti di manovra

MG - L01	Compound con LTFE. Eccellenti proprietà antigrippanti. Lubrificazione efficace e duratura
MG - D0I	Prodotto addittivato con LTFE. Formulato per applicazioni soggette a vibrazioni. Eccellente protezione dalla corrosione, capacità lubrificante, riduzione dei giochi madrevite, annullamento rumorosità

Codice Articolo	Descrizione	Confezione	
MG - L01	Prodotto -Grease con proprietà lubrifi canti	confezione da 30 grammi	
MG - D01	Prodotto -Grease con proprietà damping	confezione da 30 grammi	


Accessori

Supprti adattatori per madreviti flangiate

Caratteristiche Tecniche Supporti					
Acciaio I I SMnPb37 1.0737					
Brunitura nera					
± 0,1 mm					

Indicato per il fissaggio radiale delle madreviti flangiate. Utilissimi nelle prototipazioni.

	Codice	Compatibilità madreviti flangiate con	L1	L2	L3	L4	D1
	Articolo	diametro filetto Tr	mm	mm	mm	mm	viti fissaggio
S	SAFR I	TrI0 - TrI2	31	44	27,5	15	M8
S	SAFR 2	Tr14	31	44	27,5	15	M8
S	SAFR 3	Tr16	31	44	27,5	15	M8
S	SAFR 4	Tr18	37,5	54	37,5	29,5	MI0
S	SAFR 5	Tr20 - Tr22	37,5	54	37,5	29,5	MI0
S	SAFR 6	Tr25	49,5	70	52	38	MI2
S	SAFR 7	Tr28 - Tr30	49,5	70	52	38	MI2

R Disponibile su richiesta

S Stock disponibile a magazzino

Informazioni tecniche

Scelta componenti

Viti con filettatura a profilo trapezio

La realizzazione di filettature mediante rullatura è un procedimento che permette di eseguire filettature esterne di precisione in grande serie ed a a costi contenuti. Differisce dai metodi tradizionali di produzione con utensili da taglio in quanto agisce mediante deformazione plastica del materiale con un processo di laminazione per rotolamento ottenuto per mezzo di rulli filettati.

Il processo ha come effetto una modifica della struttura cristallina del metallo che assume una configurazione a fibre che seguono, senza interruzione, la geometria del filetto addensandosi in corrispondenza del nocciolo e del fianco, proprio la dove la filettatura è più sollecitata.

I vantaggi del processo di rullatura rispetto a quello per asportazione di truciolo, si possono così riassumere:

- maggior resistenza del filetto alle sollecitazioni meccaniche grazie alla continuità delle fibre del materiale;
- maggior resistenza ad usura in quanto il processo di rullatura produce un incrudimento ed una levigatura dei fianchi del filetto con un aumento della durezza superficiale ed una diminuzione del coefficiente di attrito;
- possibilità di operare con elevate velocità di lavoro nei meccanismi vite madrevite grazie al ridotto valore del coefficiente d'attrito ed alla elevata resistenza all'usura;
- prodotto più economico di quello ottenuto per asportazione di truciolo.

In conclusione, le viti a profilo trapezio ottenute con processo di rullatura, particolarmente quando accoppiate con madreviti in bronzo, permettono di ottenere sistemi di traslazione con prestazioni di efficienza, scorrevolezza,

silenziosità ed affidabilità notevolmente migliori rispetto a quelli realizzati con viti ottenute per asportazione di truciolo.

Materiali delle viti

I materiali utilizzati per la produzione di viti sono tutti corredati di cerficatodiqualità attestanti le proprietà chimiche e meccaniche dei singoli lotti consegnati dai nostri fornitori. Valutate le diverse caratteristiche dei materiali offerti dal mercato, abbiamo scelto l'acciaio al carbonio .NE20402)W e l'acciaio INOX AISI-SAE 304 (W.Nr. I.430I). L'acciaio al carbonio C20 offre compromesso fra lavorabilità viti semilavorato e caratteristiche meccaniche del prodotto finito, permettendodiottenereviti con una ottimafiniturasuper ficialeecon buone caratteristiche meccaniche. L'acciaio

austenitico con caratteristiche tecnologiche chimiche e meccaniche della fornitura. Il paragonabili a quelle dell'acciaio C20 e che Bronzo è una lega di RAME e STAGNO. presenta contemporaneamente una buona bronzo comune industriale sono pre

Le viti costituiscono pertanto in ogni caso un eccellente semilavorato per successive lavorazioni grazie alle ottime caratteristiche di saldabilità e di lavorabilità per asportazione di truciolo degli acciai C20 ed AISI 304.

resistenza alla corrosione.

Madreviti cilindriche e flangiate

Le madreviti MONo prodotte nelle cilindrica flengiata; quest'ultimasempli fica notevolmente le operazioni di montaggio grazie alla presenza di fori di fissaggioper l'alloggiamento di viti metriche a testa cilindrica (UNI 5931).

Le madreviti sono in ogni caso realizzate con un elevato rapporto lunghezza/diametro in modo da assicurare limitati valori di pressione supficialedicontattofraidenti dei filettiinpresa(la pressione superficiale di contatto è data dal rapporto fra la forza assiale applicata al sistema vite-madrevite e l'area di appoggio dei filetti della madrevite su quelli della vite).

Le madreviti in ogni materiale forma e dimensione, sono marcate sul bordo con l'indicazione del diametro della filettatura e del verso di filettatura, se sinistro con la sigla SX. In tal modo è più agevole l'identificazione da parte del rivenditore e dell'utilizzatore finale, eliminando ogni rischio di errore.

Materiali delle madreviti

come

semilavorato e caratteristiche meccaniche del Le madreviti vengono realizzate in ac prodotto finito,permettendodiottenereviti automatico A/PB (WNr. 1.0737) ed in con una ottimafiniturasuper ficialeecon bronzo G.CuSn12 UNI 7013) : tutti i materiali buone caratteristiche meccaniche. L'acciaio utilizzati sono corredati di cêtcitirilasciati INOX AISI-SAE 304 è un acciaio inossidabiledal produttore attestanti le proprietà

Bronzo è una lega di RAME e STAGNO. Nel bronzo comune industriale sono presenti anche degli alliganti secondari quali zinco e piombo, che ne diminuiscono la purezza. Il bronzo G-CuSn12 è un bronzo Binario. Ciò significachehasoloalliganteprincipale-lo stagno- e quindi è estremamente puro. Il bronzo G-CuSn12 ha caratteristiche qualitative elevate se comparato con i normali bronzi industriali. Le particolari proprietà di purezza della lega gli conferiscono proprier di resistenza all'usura notevolmente migliori verrsiomiel caso delle madreviti in bronzo trasformano in una maggiore resistenza dei letti all'usura derivante dallo strisciamento per contatto con filettidellavite. Le madreviti in acciaio sono caratterizzate da una notevole resistenza meccanica: quelle in

una notevole resistenza meccanica; quelle bronzo da una buona resistenza all'usura e da un basso confiented'attrito nell'accoppiamento vite madrevite, sono particolarmente indicate per tutte le applicazioni in cui è richiesto un movimento frequente fra

Scelta componenti

vite e madrevite anche con velocità relativamente elevate.

La scelta della coppia vitemadrevite

La scelta dei componenti del sistema vite madrevite va effettuata valutando attentamente tutti i parametri che influiscono sulla funzionalità, affidabilità e durabilità del sistema.

Occorre pertanto fare alcune considerazioni per una corretta scelta di:

- vite:
- madrevite;
- · coppia vite madrevite.

Ouale vite

Per scegliere correttamente la vite occorre analizzare.

- ambiente di lavoro;
- precisione di posizionamento richiesta dal sistema vite-madrevite;
- eventuale necessità di irreversibilità del moto.

In ambienti di lavoro normali, in assenza particolari agenti corrosivi o ossidanti, possono essere utilizzate senza particolari precauzioni le viti in acciaio al carbonio.

Quando l'ambiente di lavoro è caratterizzato dalla presenza di agenti particolarmente aggressivi, o è richiesta una assoluta stabilità chimica della vite, si consiglia l'utilizzo di viti in acciaio inossidabile.

Queste ultime sono particolarmente indicate per:

- ambienti ad elevata umidità o in immersione in acqua, specialmente se contiene sali aggressivi disciolti;
- ambienti caratterizzati da elevate temperature di funzionamento, in quanto l'acciaio inossidabile austenitico conserva buone caratteristiche meccaniche ed

- elevata resistenza alla corrosione ed ossidazione anche a temperature relativamente alte;
- ambienti caratterizzati dalla presenza di agenti corrosivi;
- ambienti in cui è indispensabile evitare la contaminazione dei prodotti di processo (industrie alimentari, medicali, farmaceutiche, ecc.).

Quando la coppia vite-madrevite viene utilizzata come sistema di posizionamento, occorre valutare se la precisione del passo della vite garantisce la precisione richiesta.

Le viti MONTESI vengono prodotte sotto controllo continuo del passo con strumentazione a controllo numerico che segnala immediatamente la produzione fuori tolleranza.

Le nostre viti vengono prodotte con precisione del passo in classe 100, ovvero con un errore massimo sul posizionamento di 0,100 mm ogni 300 mm di tratto filettato. Questa precisione è più che sufficiente per le applicazioni comuni; quando è richiesta una maggiore precisione di posizionamento consigliamo l'uso delle nostre viti ottenute per asportazione di truciolo.

La reversibilità del moto del sistema vite madrevite dipende dal rendimento del meccanismo che a sua volta dipende dal coefficiente d'attrito fra le superfici a contatto e dall'angolo di inclinazione dell'elica.

Teoricamente, perché un meccanismo sia irreversibile è sufficiente che abbia un rendimento nel moto diretto inferiore a 0,5; nel caso del sistema vite madrevite, se è necessario garantire l'assoluta irreversibilità del moto anche in presenza di vibrazioni, consigliamo la scelta di viti con rendimento inferiore a 0,30÷0,35.

Quale madrevite

La scelta della madrevite va fatta in base a:

- · ambiente di lavoro;
- operatività del sistema;
- esigenze di montaggio.

Per quanto riguarda le condizioni dell'ambiente di lavoro valgono, per le madreviti in acciaio, le stesse considerazioni fatte per le viti mentre le madreviti in bronzo possono essere utilizzate anche in ambienti ossidanti o leggermente corrosivi.

Nel caso in cui il sistema debba operare in ambienti particolarmente aggressivi per la presenza di agenti altamente corrosivi, possono essere studiate soluzioni con materiali speciali o con specifici trattamenti protettivi superficiali.

Le madreviti in acciaio sono particolarmente indicate come elementi di fissaggio, grazie alla loro eccezionale resistenza meccanica, o come componenti di sistemi caratterizzati da limitata velocità e da carichi moderati o comunque tali da evitare il rischio di grippaggio.

Le madreviti cilindriche in bronzo sono particolarmente indicate per tutte quelle applicazioni in cui il meccanismo è soggetto a moto in presenza di carico; in questi casi le prestazioni del sistema, in termini di efficienza, affidabilità e durata, sono tanto migliori quanto più efficace è il sistema di lubrificazione.

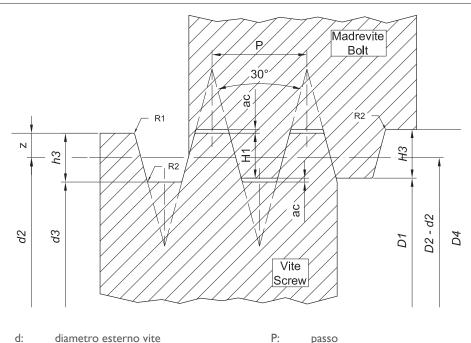
Quando la temperatura di lavoro può raggiungere valori elevati (>130°) occorre porre particolare attenzione al lubrificante utilizzato.

Le madreviti flangiate presesentano, rispetto a quelle cilindriche in bronzo, un ulteriore vantaggio per la semplicità di montaggio garantita dalla presenza di fori per viti a testa cilindrica con esagono

Scelta componenti

incassato (UNI 5931).

Dimensionamento della coppia vite-madrevite


Un corretto dimensionamento del sistema vite-madrevite deve tenere conto delle possibili condizioni di funzionamento del meccanismo pertanto si esegue considerando i seguenti punti:

- dimensionamento a carichi assiali di trazione o compressione;
- dimensionamento velocità
- dimensionamento ad usura.

Il sistema non è indicato per sopportare sollecitazioni di flessione o taglio che, se presenti, dovranno essere equilibrate da altri dispositivi.

Per applicazioni ove si richiede una notevole resistenza meccanica con velocità relativa modesta o nulla, può essere sufficiente un dimensionamento in base ai valori dei carichi ammissibili in trazione o compressione, mentre in tutti gli altri casi è necessario considerare tutti e tre i punti sopra esposti.

Quando si richiede un notevole rapporto fra velocità di traslazione e velocità di rotazione si possono utilizzare viti a più principi come pure si possono utilizzare viti a filettatura sinistra quando lo richiedono particolari esigenze di funzionamento..

d2: diametro medio vite

43. diametro interno vite

DI: diametro interno madrevite

D2: diametro medio madrevite D4: diametro esterno madrevite

gioco di fondo ac:

0.5 • P HI:

h3/H4: HI + ac = 0,5 • P + ac

 $0.25 \cdot P = H1/2$

d3: d - 2 • h3

d2/D2: $d - 2 \cdot z = d - 0.5 \cdot P$

d - HI = d - PDI:

D4: $d + 2 \cdot ac$ RI: 0.5

R2· 0.5

Dimensionamento a carichi assiali di trazione e compressione

Dimensionamento a carichi assiali di trazione e compressione

Quando la vite è caricata assialmente occorre tenere conto, non solo delle limitazioni per carico unitario massimo ammissibile (sollecitazione di trazione o sollecitazione di compressione su viti di lunghezza limitata rispetto al diametro), ma anche delle limitazioni per carico di punta (carico di compressione su strutture snelle).

Il carico ammissibile in trazione dipende unicamente dal materiale e dalla sezione resistente della vite o della madrevite.

La tabella I riporta i dati sperimentali di prove effettuate da un laboratorio indipendente autorizzato.

Le prove sono state effettuate applicando la forza di trazione a due madreviti in presa su uno spezzone di vite; i dati riportati rappresentano il carico in corrispondenza del quale si è verificata la rottura della vite o della madrevite.

E' importante notare che per diametri nominali di filettatura inferiori a 40 mm si è verificata la rottura della vite anche con madrevite in bronzo; ciò grazie alle dimensioni delle madreviti che, garantendo un elevato numero di filetti contemporaneamente in presa, evitano lo "sgranamento" della filettatura anche ai carichi estremi.

I valori di tabella sono relativi a prove sperimentali effettuate su viti in acciaio al carbonio C20.

Per determinare il carico di esercizio massimo ammissibile, è necessario dividere il valore di tabella per un adeguato coefficiente di sicurezza il cui valore deve essere determinato dal progettista (in genere compreso fra 3 e 6).

Tabella I: Carico di rottura a trazione di sistemi vite madrevite

V. (1)	N.	IZ-C		
Vite	N	Kgf		
Tr12x3 - Tr12x6	55.400	5.649		
Tr14x4 - Tr14x8	67.500	6.883		
Tr16x4 - Tr16x8	89.200	9.095		
Tr18x4 - Tr18x8	107.200	10.931		
Tr20x4 - Tr20x8	159.500	16.264		
Tr22x5 - Tr22x10	182.000	18.559		
Tr25x5 - Tr25x10	191.500	19.527		
Tr28x5	244.500	24.932		
Tr30x6 - Tr30x12	271.700	27.705		
Tr35x6	378.200	38.565		
Tr40x7 - Tr40x14	487.100	49.670		
Tr45x8	589.800	60.142		
Tr50x8	752.400	76.723		
Tr55x9	890.400	90.795		
Tr60x9	1.079.650	110.093		
Tr70×10	1.448.490	1.477.047		
Tabella I				

Particolare considerazione deve essere fatta per gli acciai INOX. Le caratteristiche meccaniche di resistenza a trazione evidenziano come vi siano peculiarità di limite elastico e campo di deformazione plastica allorquando una forza di trazione agisce su una vite di acciaio inossidabile. In particolare gli acciai austenitici (come l'AISI 304) mostrano una curva di deformazione tutta particolare, a differenza degli acciai martensitici o ferritici.

Questi ultimi infatti hanno un limite di deformazione elastico, ovvero entro certi limiti la forza di trazione applicata non genera deformazioni plastiche permanenti. Gli acciai austenitici invece hanno una curva di deformazione interamente plastica, con la conseguenza che una volta terminata la forza (in questo caso di trazione) il materiale mantiene una deformazione di allungamento permanente. Viene utilizzato un limite convenzionale di elasticità che definisce lo sforzo unitario tale che dopo la soppressione il metallo mantiene un allungamento permanente dato pari allo 0,2% (Rp 0,2).

In virtù di tali caratteristiche dell'acciaio utilizzato per la produzione di viti INOX (acciaio austenitico) l'applicazione di forze di trazione significative può determinare delle deformazioni di allungamento che possono compromettere il funzionamento del sistema vite-madrevite .

La valutazione di resistenza al carico di trazione deve perciò essere fatta con preventiva valutazione degli effetti che le forze in azione potrebbero causare sul funzionamento del sistema a causa delle deformazioni plastiche .

Quando la vite deve sopportare un carico di compressione occorre fare distinzione fra viti tozze e viti snelle: nel primo caso la vite va dimensionata con gli stessi criteri esaminati per le viti soggette a trazione ed utilizzando sempre i dati della tabella I; nel secondo caso invece la vite va dimensionata a "carico di punta"; bisogna in altri termini, evitare che un eccessivo carico provochi l'instabilità della vite per inflessione laterale.

In questo caso il carico massimo ammissibile dipende, oltre che dalla sezione resistente e dalla natura del materiale, anche dai vincoli di estremità e dalla lunghezza libera della vite.

Il diagramma N° I riporta per i diversi valori del diametro nominale di filettatura i carichi massimi in compressione in funzione della lunghezza della vite e della natura dei supporti.

Dimensionamento a carichi assiali di trazione e compressione

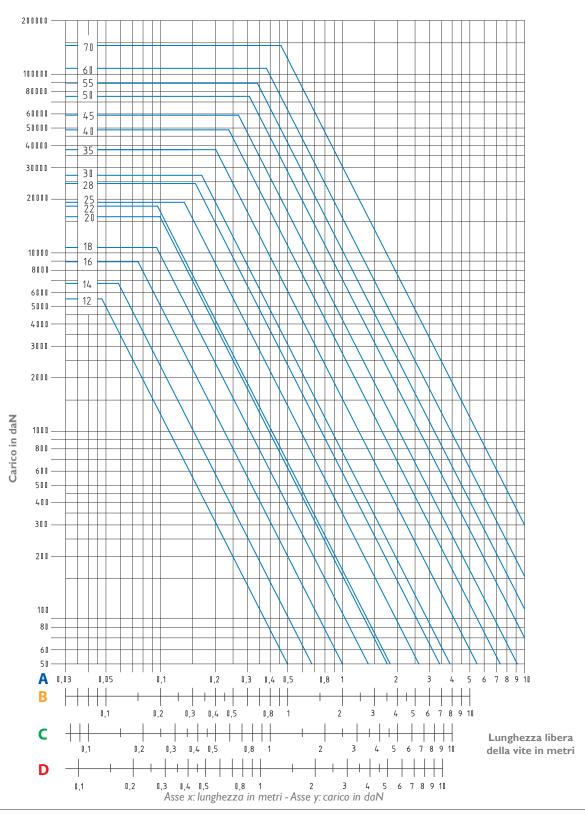


Diagramma I

Dimensionamento a carichi assiali di trazione e compressione

I tratti orizzontali dei diagrammi si riferiscono a viti tozze cioè a viti per le quali la lunghezza è tale per cui non sussiste il pericolo di instabilità per carico di punta e che pertanto vanno dimensionate in base alla sezione resistente.

Per determinare il carico di esercizio massimo ammissibile, è necessario dividere i valori desunti dal grafico per un adeguato coefficiente di sicurezza il cui valore deve essere determinato dal progettista (in genere >3).

Esempi

Esempio I

Determinare il carico assiale massimo in compressione che può sopportare una vite Tr25 avente lunghezza L=1500mm, supportata da due cuscinetti ad ogni estremità ed applicando un coefficiente di sicurezza f=4.

Dal grafico, entrando con il valore assegnato di lunghezza libera sulla scala corrispondente alle condizioni di vincolo assegnato, ricaviamo il valore

Fmax = 1260daN, pertanto, volendo operare con un coefficiente di sicurezza f = 4, il valore del carico massimo ammissibile è:

Famm = 315daN

Esempio 2

Determinare il diametro nominale di una vite che deve sopportare un carico assiale di compressione F=800daN sapendo che ha una lunghezza L=1250mm, è sorretta da un cuscinetto ad ogni estremità e si vuole un coefficiente di sicurezza f=3.

Dai valori assegnati si ricava:

Fmax = 800x3 = 2400daN

Tracciando nel grafico una linea orizzontale in corrispondenza di

Fmax = 2400daN e una linea verticale in corrispondenza di L = 1250 mm dalla scala relativa alle condizione di vincolo assegnate (un cuscinetto per ciascuna estremità - scala B) si determina un punto compreso fra i diagrammi relativi alle viti Tr30 e Tr28; si sceglie la vite più prossima al punto trovato o, quando ragioni di sicurezza lo impongono, la vite con diametro maggiore.

Tabella dei vincoli di estremità

Тарена	dei vilicoli di estrellilita	
Scala	Vincoli	
А	Vite supportata da due cuscinetti ad una sola estremità	Ie Ie
В	Vite supportata da un cuscinetto ad ogni estremità	le le
С	Vite supportata da due cuscinetti ad una estremità e da un cuscinetto all'altra estremità	le le
D	Vite supportata da due cuscinetti ad entrambe le estermità	le le

Dimensionamento alla velocità critica

La velocità critica è la frequenza di rotazione oltre la quale si verificano fenomeni di vibrazione della vite con conseguenti gravi irregolarità di funzionamento che possono compromettere la stabilità del sistema; questa velocità non deve pertanto essere mai raggiunta.

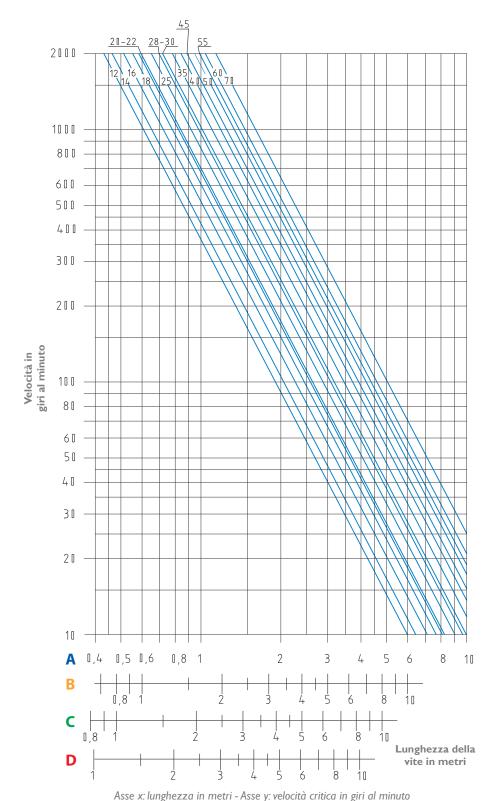
Essa dipende da:

- · diametro della vite;
- natura dei vincoli di estremità della vite, ovvero dal numero dei cuscinetti di supporto;
- lunghezza libera della vite.

Il diagramma N°2 riporta, per i diversi valori del diametro nominale di filettatura, il numero di giri massimo in funzione della lunghezza della vite e della natura dei supporti.

Per determinare la velocità massima ammissibile in esercizio è necessario dividere i valori desunti dal grafico per un adeguato coefficiente di sicurezza il cui valore deve essere determinato dal progettista (in genere > 1,5).

Esempi

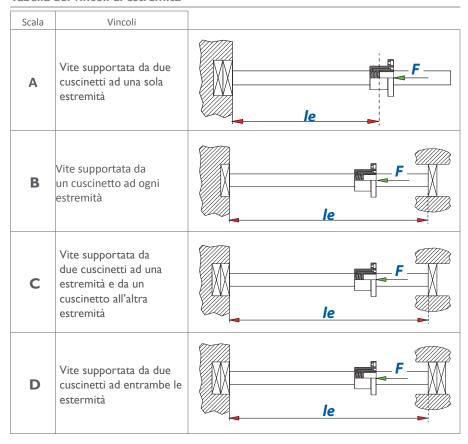

Esempio 3

Determinare la velocità di rotazione massima ammissibile di una vite Tr25 avente una lunghezza libera L = 3000mm, supportata da un cuscinetto ad una estremità e da una coppia di cuscinetti all'altra estremità ed applicando un coefficiente di sicurezza f = 2.

Dal grafico ricaviamo, in corrispondenza della scala relativa alle condizioni di vincolo assegnate (scala C) velocità in giri al minuto = 400; con il valore assegnato per il coefficiente di sicurezza si ricava:

nmax = 400 giri al minuto

namm = 400/2 = 200 giri al minuto



Asse x. lunghezza in metri - Asse y. velocità critica in giri di minut

Diagramma 2

Dimensionamento alla velocità critica

Tabella dei vincoli di estremità

Dimensionamento a usura

L'usura del sistema vite-madrevite dipende essenzialmente da:

- coefficiente di attrito fra le superfici a contatto di vite e madrevite;
- velocità relativa di strisciamento;
- pressione superficiale di contatto fra i fianchi dei filetti:
- condizioni di funzionamento (lubrificazione, presenza di agenti inquinanti, temperatura di esercizio. ecc.).

L'usura è sensibilmente influenzata dalle condizioni di funzionamento, pertanto è praticamente impossibile fornire valori di riferimento utilizzabili per la progettazione a durata della madrevite; le valutazioni di seguito riportate dovranno quindi essere considerate largamente indicative in quanto tengono conto solo di alcuni dei parametri che influiscono sull'usura.

Si raccomanda in ogni caso di proteggere il sistema vite madrevite dalla polvere e da altri corpi estranei che, depositandosi sui fianchi dei filetti, possono aumentare sensibilmente l'usura anche in condizioni di lavoro non particolarmente gravose; si consiglia inoltre di prestare particolare attenzione a tutte quelle applicazioni in cui la temperatura di lavoro può raggiungere valori tali per cui il lubrificante perde le proprie caratteristiche.

Per prefissati valori del coefficiente d'attrito e in determinate condizioni di funzionamento, i parametri che influenzano l'usura sono la pressione superficiale di contatto e la velocità relativa di strisciamento.

La pressione superficiale di contatto dipende unicamente dalle dimensioni della madrevite e dal carico assiale, mentre la velocità di strisciamento dipende dall'angolo di inclinazione dell'elica e dalla velocità di traslazione assiale.

Quest'ultima è legata alla velocità di rotazione e al passo della madrevite dalla seguente formula:

$$Va = \frac{n \cdot p}{1000}$$

Dove:

Va: velocità di traslazione assiale della madrevite rispetto alla vite in m/min;

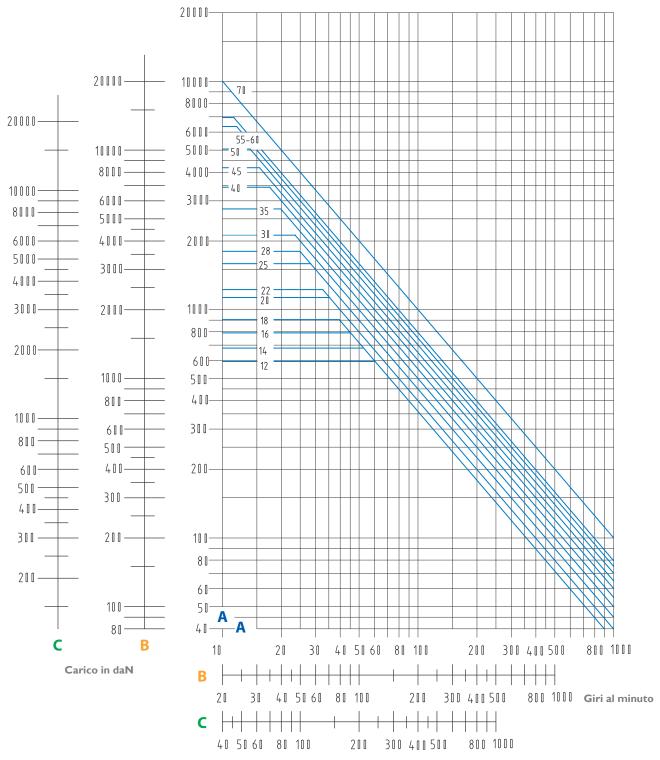
p: passo dell'elica in mm;

n: velocità di rotazione in giri/min.

Nella determinazione del carico assiale sulla vite occorre valutare anche l'effetto delle forze d'inerzia che si generano nelle fasi di accelerazione e decelerazione; quando non è possibile valutare le forze d'inerzia a causa della variabilità del moto, si consiglia di correggere il valore del carico con il fattore di servizio moltiplicativo riportato in Tabella 2 in funzione delle condizioni di esercizio.

Natura del carico	Fattore di servizio
Carico costante con rampe di accelerazione e decelerazione controllate	da I a 2
Carico costante con partenze ed arresti bruschi	da 2 a 3
Carichi e velocità con variazioni accentuate	da 3 a 4
Funzionamento in presenza di urti e vibrazioni	da 4 a 6

Tabella 2 Fattori di servizio per le forze di inerzia


I diagrammi N° 3 e N° 4 forniscono per le madreviti in bronzo ad I e 2 principi, i dati per il dimensionamento di massima ad usura per applicazioni con buona lubrificazione; i grafici indicano direttamente, in funzione delle condizioni di esercizio consentite, il carico assiale ammissibile al variare del numero di giri.

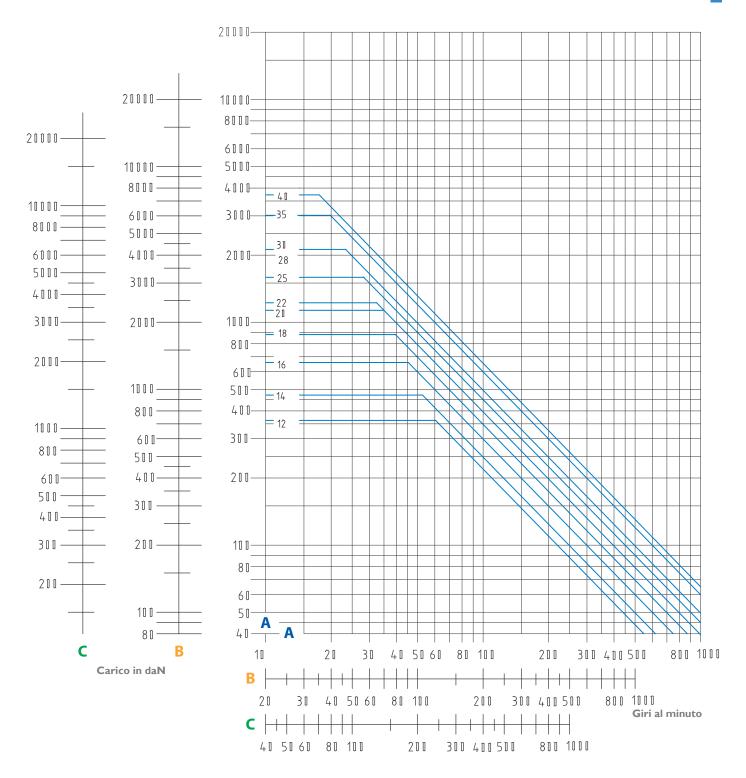
La scala A è relativa all'utilizzo con "servizio continuo" con usura contenuta in valori modesti e buona durata delle madreviti.

La scala B è relativa all'utilizzo in condizioni di usura sensibile ma ancora accettabile; è comunque indispensabile una buona lubrificazione ad olio.

Il funzionamento in "continuo" deve essere limitato a brevi periodi di tempo per evitare il surriscaldamento della madrevite con conseguente perdita di efficacia del lubrificante. La scala C è relativa a condizioni di utilizzo molto gravose anche in presenza di una abbondante lubrificazione ad olio. Il funzionamento in queste condizioni provoca in ogni caso un veloce consumo della madrevite a causa dell'elevata pressione superficiale nel contatto vite madrevite e del sensibile riscaldamento che pregiudica l'efficacia del lubrificante. Non è consentito il funzionamento in continuo nemmeno per brevi periodi.

Dimensionamento a usura

Asse x: velocità di rotazione in giri al minuto - Asse y: carico assiale in daN


Scala A : condizioni di utilizzo in servizio continuo con usura contenuta e buona durata delle madreviti

Scala B: condizioni di utilizzo con usura sensibile ma accettabile; necessita buona lubrificazione; limitare l'utilizzo in servizio continuo a periodi brevi

Scala C : condizioni di utilizzo gravose anche in buona lubrificazione; surriscaldamento molto probabile; non ammissibile servizio in continuo anche per brevi periodi

Diagramma 3

Dimensionamento a usura

Asse x: velocità di rotazione in giri al minuto - Asse y: carico assiale in daN

Scala A : condizioni di utilizzo in servizio continuo con usura contenuta e buona durata delle madreviti

Scala B: condizioni di utilizzo con usura sensibile ma accettabile; necessita buona lubrificazione; limitare l'utilizzo in servizio continuo a periodi brevi Scala C: condizioni di utilizzo gravose anche in buona lubrificazione; surriscaldamento molto probabile; non ammissibile servizio in continuo anche per brevi periodi

Diagramma 4

Dimensionamento a usura

Esempi

Esempio 4

Dimensionare ad usura una madrevite cilindrica in bronzo che deve operare nelle condizioni di utilizzo per servizio continuo con usura contenuta (scala A), con forze d'inerzia generate da partenze ed arresti bruschi ed è soggetta ad un carico assiale costante di 1500N e ad un movimento con velocità di traslazione di 0.5 m/min.

Anzitutto occorre ponderare il carico assiale con l'opportuno fattore di servizio riferito alle forze di inerzia che caratterizzeranno il funzionamento del sistema vite-madrevite.

In questo caso, essendo presenti forze di inerzia generate da partenze ed arresti bruschi in presenza però di un carico costante, può essere preso un coefficiente compreso fra 2 e 3 (vedasi tabella 2)

Dai valori del carico applicato alla madrevite e del fattore di servizio assunto pari a 2,5 si determina il carico assiale per il dimensionamento della madrevite; nel nostro caso si ha:

$$Fa = 1500 \cdot 2,5 = 3750 N$$

Attenzione : il grafico riporta sulla scala dei valori di carico l'unità di misura in daN. Dovremo quindi ricercare il valore diviso per 10 , ovvero 3750 N/10 = 375 daN

A questo punto occorre individuare sul grafico del diagramma N°3 la vite meglio dimensionata per l'applicazione. Sapendo la velocità di traslazione che deve essere pari a 0,5 m/min , con la formula precedentemente illustrata si può ricavare il valore del passo della vite che si andrà a dimensionare

Velocità di traslazione Va:

$$Va = \frac{n \cdot p}{1000}$$

Dove:

p: passo della vite in mmn: numero giri al minuto

Si ricava quindi che:

$$0.5 = (p \cdot n) / 1000$$

Dall'esame delle rette del diagramma 3 si può notare che una madrevite del tipo Tr22x05 o Tr25x05 risulta essere correttamente dimensionata, in quanto il passo 5 mm richiede una velocità di rotazione pari a 100 giri al minuto per ottenere una velocità di traslazione pari a quella richiesta di 0,5 metri al minuto.

Si ricava quindi che un sistema vitemadrevite in bronzo del tipo Tr25x05 è sufficientemente dimensionato.

Esempio 5

Scegliere la madrevite in bronzo più adatta dimensionandola ad usura in base a delle condizioni di applicazione con forze d'inerzia generate da carichi e velocità con possibili variazioni e soggetta ad un carico assiale medio di 6000 N e ad un movimento con velocità di traslazione di 0.25 m/min.

Anzitutto occorre ponderare il carico assiale con l'opportuno fattore di servizio riferito alle forze di inerzia che caratterizzeranno il funzionamento del sistema vite-madrevite.

In questo caso, essendo presenti forze di inerzia generate da carichi e velocità con possibili variazioni accentuate, occorre considerare almeno un coefficiente 3 (vedasi tabella 2).

Dai valori del carico applicato alla madrevite e del fattore di servizio assunto pari a 3 si determina il carico assiale per il dimensionamento della madrevite; nel nostro caso si ha:

Attenzione: il grafico riporta sulla scala dei valori di carico l'unità di misura in daN. Dovremo quindi ricercare il valore diviso per 10, ovvero $18.000\ N/0 = 1800\ da<math>N$

A questo punto occorre individuare sul grafico del diagramma N°3 la vite meglio dimensionata per l'applicazione. Sapendo la velocità di traslazione che deve essere pari a 0,25 m/min , con la formula precedentemente illustrata si può ricavare il valore del passo della vite che si andrà a dimensionare

Velocità di traslazione Va:

$$Va = \frac{n \cdot p}{1000}$$

Dove:

p: passo della vite in mm n: numero giri al minuto

Si ricava quindi che:

$$0.5 = (p \cdot n)/1000$$

Ora per viti aventi passi differenti, avremo un numero di giri richiesto diverso al fine di ottenere la stessa velocità di avanzamento:

- per una vite passo 5 mm, il numero di giri sarà : (0,25 • 1000)/5 = 50 giri al minuto
- per una vite passo 8 mm, il numero di giri sarà : (0,25 • 1000)/8 = 31 giri al minuto circa

Per la gamma di viti aventi passo 5 mm (Tr22x05, Tr25x05, Tr28x05) in corrispondenza della velocità di rotazione pari a 50 giri al minuto, non si trovano punti che rimangano sotto alla retta. Ciò significa che le condizioni della scala A non sono riscontrabili per tali tipi di viti, mentre potrebbe rientrarvi la vite Tr28x05 sulla scala B .

Per la gamma di viti aventi passo 8 mm (Tr45x08, Tr50x08) in corrispondenza della velocità di rotazione pari a 31 giri al minuto, si nota che le viti aventi tale passo si trovano ampiamente al di sopra del punto di incrocio fra numero di giri e carico assiale, quindi il dimensionamento all'usura risulta essere corretto.

Rendimento - carico assiale - coppia - potenza

Le relazioni che legano rendimento, carico assiale, momento in entrata e potenza sono date dalle seguenti formule:

Formula A - determinazione del MOMENTO TORCENTE

$$M = \frac{Fa \cdot p}{\pi \cdot \eta \cdot 2000}$$

Formula B - determinazione della POTENZA conoscendo il MOMENTO TORCENTE

$$MP = \frac{M \cdot n}{9,55}$$

Formula C - determinazione della POTENZA

$$P = \frac{Fa \cdot n \cdot p}{6000 \cdot \eta}$$

Dove:

M: momento torcente in entrata in Nm;

Fa: carico assiale agente sulla madrevite in N:

η: rendimento del sistema vite madrevite:

p: potenza di azionamento della vite in W; p: passo dell'elica in mm;

n: velocità di rotazione in giri al minuto.

 $\pi: 3,141592$

Il rendimento del sistema vite madrevite è riportato nelle tabelle 3, 4, 5 e 6 in funzione del materiale della madrevite, del numero di principi della filettatura e dello stato delle superfici di contatto.

I dati di tabella sono stati desunti da prove di laboratorio effettuate sul sistema vite madrevite, misurando il momento torcente necessario ad azionare la vite in presa sulla relativa madrevite impedita di ruotare e sottoposta ad un carico assiale costante.

I dati di tabella evidenziano chiaramente che il rendimento più elevato si ha con madreviti in bronzo, con superfici di contatto lubrificate e con viti a due principi grazie al valore più elevato dell'angolo di inclinazione dell'elica.

Poiché il rendimento di un meccanismo rappresenta la frazione di energia utile, è chiaro che si deve nel limite del possibile privilegiare tutte quelle soluzioni che possono aumentarlo; pertanto quando le condizioni di esercizio lo consentono è preferibile utilizzare viti a due o più principi per dissipare la minore quantità possibile di energia.

Rendimento - carico assiale - coppia - potenza

Tabella 3	
Rendimento	Viti a I principio
η	Madreviti in bronzo

Vite	Dinamico	Primo distacco	Dinamico	Primo distacco
	secco	secco	lubrificato	lubrificato
Tr12x3	0,26	0,22	0,25	0,29
Tr14x4	0,34	0,28	0,37	0,31
Tr16x4	0,30	0,24	0,37	0,30
Tr18x4	0,27	0,20	0,34	0,29
Tr20x4	0,25	0,19	0,33	0,28
Tr22x5	0,25	0,20	0,29	0,24
Tr25x5	0,24	0,20	0,29	0,23
Tr28x5	0,24	0,19	0,28	0,21
Tr30x6	0,24	0,19	0,30	0,23
Tr35x6	0,21	0,18	0,27	0,21
Tr40x7	0,21	0,19	0,28	0,23
Tr45x8	0,23	0,19	0,28	0,22
Tr50x8	0,20	0,17	0,25	0,22
Tr55x9	0,21	0,18	0,26	0,22
Tr60x9	0,21	0,18	0,25	0,21
Tr70x10	0,18	0,15	0,24	0,19

Tabella 4	
Rendimento	Viti a I principio
η	Madreviti in acciaio

Vite	Dinamico	Primo distacco	Dinamico	Primo distacco
	secco	secco	lubrificato	lubrificato
Tr12x3	0,24	0,21	0,34	0,29
Tr14x4	0,30	0,27	0,35	0,29
Tr16x4	0,28	0,23	0,32	0,26
Tr18x4	0,24	0,20	0,32	0,27
Tr20x4	0,22	0,18	0,25	0,21
Tr22x5	0,22	0,19	0,28	0,24
Tr25x5	0,24	0,20	0,26	0,21
Tr28x5	0,22	0,18	0,25	0,21
Tr30x6	0,21	0,18	0,26	0,22
Tr35x6	0,19	0,17	0,22	0,19
Tr40×7	0,21	0,18	0,24	0,20
Tr45x8	0,22	0,18	0,24	0,21
Tr50x8	0,19	0,16	0,24	0,21
Tr55x9	0,21	0,18	0,23	0,20
Tr60x9	0,20	0,18	0,23	0,20
Tr70×10	0,18	0,15	0,22	0,18

Tabella 5	
Rendimento	Viti a 2 principi
ŋ	Madreviti in bronzo

Vite	Dinamico secco	Primo distacco secco	Dinamico Iubrificato	Primo distacco Iubrificato
Tr12x6 (P3)	0,33	0,27	0,39	0,31
Tr14x8 (P4)	0,47	0,39	0,51	0,41
Tr16x8 (P4)	0,36	0,31	0,43	0,36
Tr18x8 (P4)	0,33	0,28	0,37	0,32
Tr20x8 (P4)	0,29	0,24	0,32	0,30
Tr22×10 (P5)	0,34	0,28	0,39	0,32
Tr25×10 (P5)	0,33	0,27	0,39	0,36
Tr30×12 (P6)	0,36	0,30	0,39	0,35
Tr40×14 (P7)	0,33	0,28	0,38	0,35

Tabella 6	
Rendimento	Viti a 2 principi
η	Madreviti in acciaio

Vite	Dinamico secco	Primo distacco secco	Dinamico Iubrificato	Primo distacco lubrificato
Tr12x6 (P3)	0,31	0,26	0,41	0,29
Tr14x8 (P4)	0,44	0,36	0,49	0,40
Tr16x8 (P4)	0,34	0,28	0,38	0,35
Tr18x8 (P4)	0,33	0,28	0,37	0,31
Tr20x8 (P4)	0,29	0,24	0,36	0,30
Tr22x10 (P5)	0,34	0,28	0,40	0,31
Tr25×10 (P5)	0,33	0,27	0,38	0,32
Tr30x12 (P6)	0,33	0,27	0,36	0,32
Tr40×14 (P7)	0,33	0,27	0,38	0,33

Formulario

Portata degli azionamenti a vite trapezoidale

La portata di una vite trapezioidale dipende in generale dalla finitura della superficie, dal materiale, dalla condizione di usura, dalla pressione superficiale, dal rapporto di lubrificazione, dalla velocità di scorrimento, dalla temperatura, nonché dalla durata di inserzione e dalle possibilità di asportazione del calore.

La pressione superficiale dipende in primo luogo dalla velocità di scorrimento dell'azionamento a vite. Durante le operazioni di movimentazione, la pressione superficiale non deve superare il valore di 5 N/mm².

È possibile calcolare la velocità ammessa dalla superficie di supporto della madrevite (vedi tabelle schede tecniche madreviti) e dal valore pv del relativo materiale della madrevite.

Valori pV	Valori pv
materiale	[N/mm 2 • m/min]
CuSn12	400
PET	100
Tabella 7	

Superficie di supporto necessario

$$Anec = \frac{Fax}{Pmaxam}$$

Dove:

Fax:

Anec: Superficie di supporto

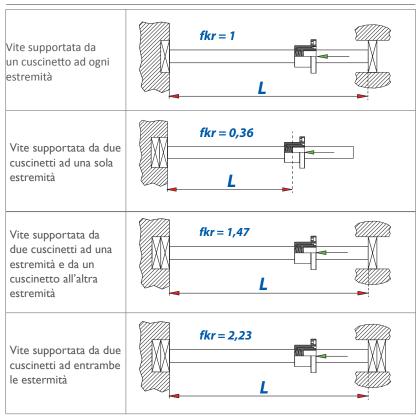
necessaria [mm²] Forza assiale [N]

Pmaxam: Pressione superficiale massima

ammessa = 5 N/mm 2

Velocità di scorrimento massima ammessa

$$VGmaxam = \frac{Valore\ pv}{Pmaxam}$$


Dove:

Valore pv: si veda tabella 7

VGmaxam: Velocità di scorrimento

massima ammessa [m/min]

Tabella dei vincoli di estremità

Formulario

Numero di giri massimo ammesso

$$nmaxam = \frac{VGmaxam \, \cdot \, 1000}{D \, \cdot \, \pi}$$

Dove:

D: Diametro medio vite [mm] nmaxam: Max numero di giri ammesso

[giri al minuto]

Velocità di avanzamento ammessa

$$smaxam = \frac{nmaxam \cdot P}{1000}$$

Dove

P: Passo della vite [mm]

Smaxam: Velocità di avanzamento

ammessa [m/min]

Numero di giri critico

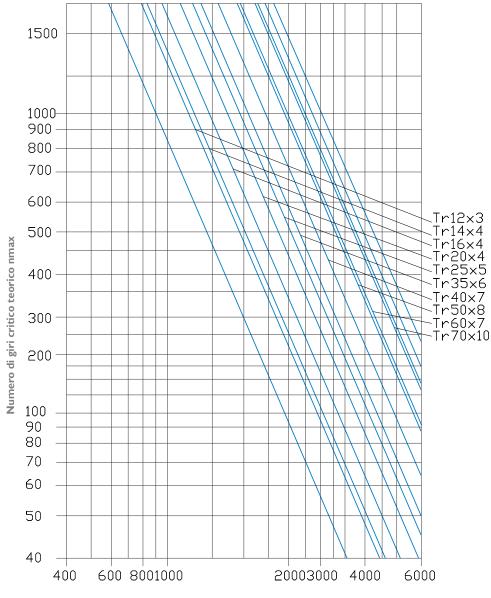
In presenza di elementi snelli e rotanti come le viti sussiste il pericolo di risonanza e di oscillazioni.

Il procedimento descritto di seguito consente di valutare la frequenza della risonanza partendo dal presupposto che l'installazione sia sufficientemente rigida. In caso di giri vicini al numero di giri critico aumentano in egual misura i rischi di flessione laterale. Il numero di giri critico deve pertanto essere valutato anche in relazione alla forza di flessione critica.

Massimo numero di giri ammesso

$$nmax = 0.80 \cdot nkr \cdot fkr$$

Dove:


nmax: Max n. di giri ammesso [I/min] nkr: N. di giri critico teorico [I/

min], che causa risonanza, vedi

diagramma

fk: Fattore di correzione che tiene conto del modo in cui è posizionata la vite. Vedi tabella 7.

Attenzione : Il numero di giri di esercizio deve rappresentare al massimo l'80 % del numero massimo di giri.

Lunghezza non sostenuta L

Diagramma 5

Formulario

Flessione critica in caso di pressione assiale (compressione)

In presenza di elementi snelli come le viti sussiste il pericolo di flessione laterale nel caso di pressione assiale. Con il procedimento descritto di seguito è possibile determinare la forza assiale ammessa secondo Eulero.

Prima di determinare la forza di pressione ammessa è necessario tenere in considerazione i fattori di sicurezza relativi all'impianto.

Massima forza assiale ammessa

$$fmax = 0.80 \cdot Fkr \cdot fk$$

Dove:

Fmax: Max. forza assiale ammessa [kN] Fkr: Forza di flessione critica teorica

[kN] (si veda il diagramma 6)

fk: Fattore di correzione che tiene conto del modo in cui è posizionata la vite.

(si vedano i disegni esplicativi a

lato)

La forza di esercizio deve rappresentare al massimo l'80 % della forza assiale massima ammessa.

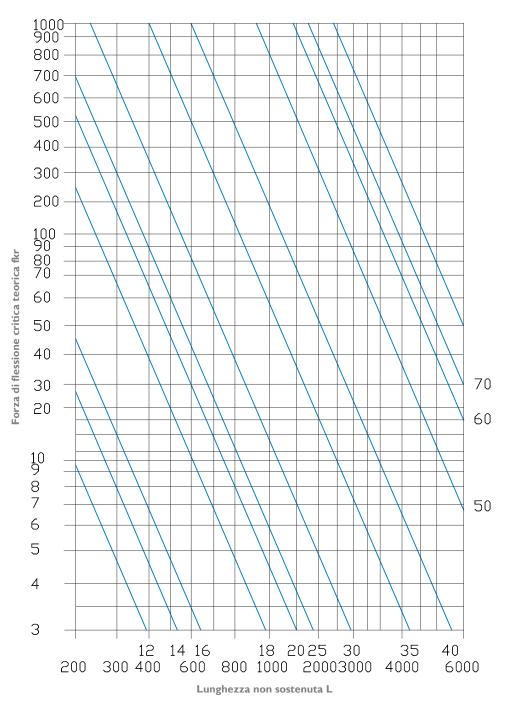
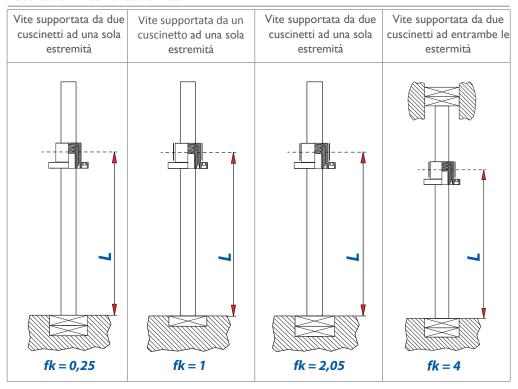



Diagramma 6

Informazioni tecniche Formulario

Tabella dei vincoli di estremità

Formulario

Flessione della vite a causa del peso

Anche con sistemi installati regolarmente dove le forze vengono assorbite da guide esterne, il peso della vite senza supporto causa la flessione.

La formula elaborata di seguito consente di determinare la flessione massima della vite.

Flessione massima della vite

$$fmax = FB \cdot 0,061 \cdot \frac{m \cdot L}{IY}$$

Dove:

fmax: Flessione massima della vite [mm]

fB: Fattore di correzione che tiene conto del modo in cui è posizionata la vite.

(si vedano i disegni a lato)

IY: Momento di inerzia superficiale [10 4 mm 4]

(si veda la scheda tecnica viti)

L: Lunghezza libera della vite senza supporto [mm]

m: Massa della vite [kg/m].(siveda la scheda tecnica viti)

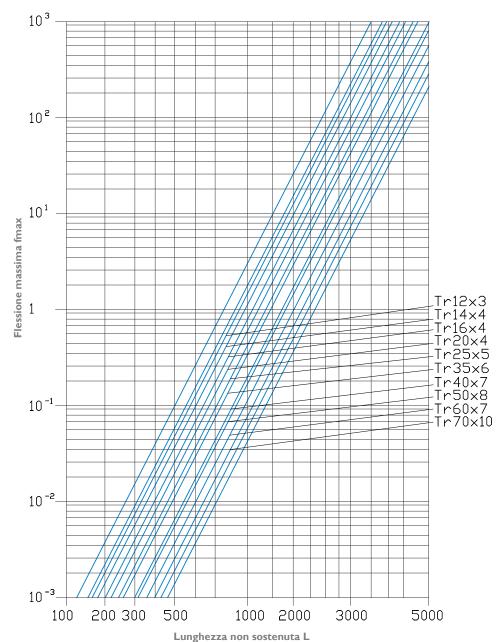
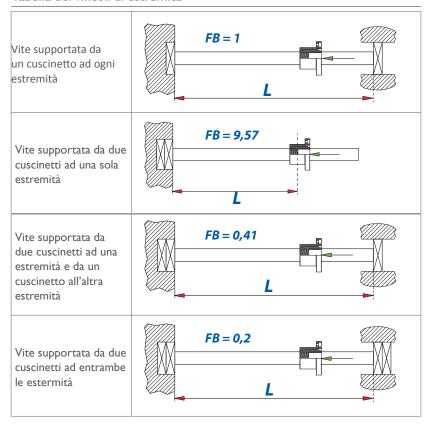



Diagramma 7

Formulario

Tabella dei vincoli di estremità

Formulario

Coppia motrice e Potenza di azionamento necessarie

La coppia motrice necessaria di un azionamento a vite dipende dal carico assiale, dal passo della vite e dal rendimento dell'azionamento a vite e dal tipo di cuscinetti.

In caso di tempi brevi di accelerazione e alte velocità è necessario verificare la coppia di accelerazione.

In linea di massima, con azionamenti a vite trapezoidali, è necessario fare attenzione a superare la coppia di spunto al momento dell'avvio.

Coppia motrice necessaria

$$Md = \frac{fax \cdot P}{2000 \cdot \pi \cdot \eta A} + Mrot$$

Dove:

Fax: Forza assiale totale [N] P=Passo della vite [mm]

ηA: Rendimento dell'intero

azionamento
=ηvite • ηCF • 4 CM • ηvite (con coefficiente di attrito μ = 0,1, si vedano le schede tecniche viti)

ηCF (Cuscinetto Fisso): = $0.9 \div 0.95$

0,710,75

ηCM (Cuscinetto Mobile): 0,95

Md: Coppia motrice necessaria [Nm]Mrot: Coppia di accelerazione rotatoria

[Nm] =|rot • a0

=7,7 • d4 • L • 10 -13

Jrot=Momento inerziale di massa rotatorio [kgm²]

d: Diametro interno viti [mm]

L: Lunghezza vite [mm]

a0: Accelerazione angolare [1/s²]

Rendimento η per coefficienti di attrito diverso da μ = 0, I

$$\eta = \frac{\tan\alpha}{\tan(\alpha + \rho')}$$

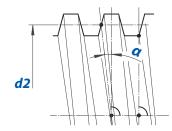
Dove:

η: Rendimento di un movimento di rotazione in un movimento longitudinale

α: Angolo di spira della vite (si vedano le schede tecniche delle viti)

$$tan\alpha = \frac{P}{d2 \cdot \pi}$$

P: Passo della vite [mm]


d2: Diametro medio [mm]

p': Angolo di attrito della vite $\tan\alpha$: $\mu \cdot 1,07$ per viti trapezie

μ: Coefficiente di attrito

		μ all'avvio		μ in movimento		
		Secco	Lubrificato	Secco	Lubrificato	
	Madreviti in metallo	0,3	0,1	0,1	0,03	
	Madreviti in plastica	0,1	0,04	0,1	0,04	

Tabella 8

Potenza di azionamento necessaria

$$Pa = \frac{Md \cdot n}{9.950}$$

Dove:

Md: Coppia motrice necessaria [Nm]

n: Numero di giri vite [I/min]

Pa: Potenza di azionamento necessaria [kW]

Coppia a seguito di un carico assiale

Viti trapezie, il cui angolo di spira è α maggiore dell'angolo di attrito q' non sono autofrenanti. Questo significa che un carico assiale produce una coppia sulla vite

Il rendimento η per la trasformazione di un movimento longitudinale in un movimento rotatorio è inferiore a quello necessario per la trasformazione di un

movimento rotatorio in uno longitudinale.

Coppia di arresto necessaria
$$Md' = \frac{fax \cdot P \cdot \eta'}{2000 \cdot \pi} + Mrot$$

Dove:

Fax: Forza assiale totale [N]

P: Passo della vite [mm]

η: Rendimento per la trasformazione di un movimento longitudinale in

$$= \frac{\tan(\alpha - \rho')}{\tan\alpha}$$

$$= 0.7 \cdot \eta$$

Md': Coppia di arresto necessaria [Nm]

Mrot: Coppia di accelerazione rotatoria

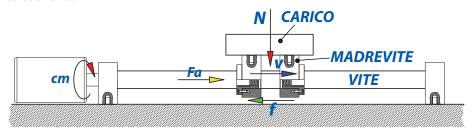
[Nm]

= Jrot • a0

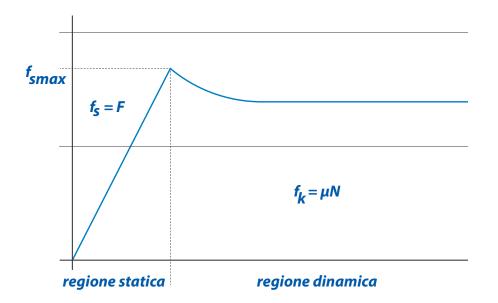
= 7,7 • d 4 • L • 10 - 13

Jrot: Momento inerziale di massa rotatorio [kgm²]

d: Diametro interno vite [mm]


L: Lunghezza vite [mm]

a0: Accelerazione angolare [1/s²]


Formulario

Calcolo della coppia motrice

La coppia motrice e' la coppia che deve sviluppare il motore per movimentare la madrevite sottoposta ad un dato carico N. Quando la madrevite si sposta lungo la base provoca una forza d'attrito f opposta alla direzione di moto e che dipende dal carico N e dal tipo di superfici poste a strisciamento.

Per muovere la madrevite con una data accelerazione e' necessario imprimerle una forza Fa che deve almeno superare la forza di attrito f.

A questo punto è immediata l'applicazione della II legge di Newton per cui vale:

$$\sum F = ma \Rightarrow Fa - f = ma$$

La forza d'attrito f e' proporzionale al carico N e vale fk = μ k N se la madrevite e' in movimento. Altresi' affiche' la madrevite possa cominciare a muoversi è necessario applicare una forza Fa>fs, max= μ s N che' la forza d'attrito statico. Le μ s e μ k sono le costanti di attrito statico e dinamico e dipendono dal tipo di superfici poste a sfregamento, sono valori tabellati e ricavati sperimentalmente:

μs	μk			
0,74	0,57			
0,61	0,47			
1,00	0,80			
0,04	0,04			
0,15	0,06			
Tabella 9				
	0,74 0,61 1,00 0,04			

Possiamo dunque concludere che le equazioni che regolano il moto della madrevite sono:

$$Fas = \mu sN \ per \ v = 0$$

$$Fak - \mu kN = m \cdot a \cdot Fak = \mu kN + m \cdot a$$

Dove Fas Fak sono rispettivamente la forza necessaria allo spunto e la forza necessaria ad imprimere una accelerazione data.

Tornando al sistema vite-madrevite e' ovvio osservare che la Fa e' la forza tangenziale a cui e' sottoposto il sistema pertanto utilizziamo Fa per determinare il momento torcente a cui sottoporrte la vite per impemere un movimento desiderato alla madrevite.

Infatti si e' mostrato in precedenza che tale momento vale

$$M = \frac{Fa \cdot p}{2\pi\eta 1000}$$

da cui otteniamo:

Coppia necessaria allo spunto

$$M_5 = \frac{Fa_5 p}{2\pi \cdot \eta_5 \cdot 1000}$$

Coppia necessaria durante il moto

$$M_{\&} = \frac{Fa_{\&}p}{2\pi \cdot \eta_{\&} \cdot 1000}$$

Formulario

Esempio di calcolo della coppia motrice

Dato un sistema vite - madrevite composto da una vite a due principi di filetto con madrevite in bronzo non lubrificato con passo p = 2x4 = 8 mm.

Dato l'insieme carico + madrevite avere una massa pari a m=2Kg e sposto a strisciare su di un piano metallico lubrificato, calcolare

- la forza necessaria allo spunto e la forza necessaria ad imprimere una accellerazione di amax= 4 m/s²;
- 2. la coppia motrice necessaria per tale azionamento;
- la massima velocita' di traslazione della madrevite ottenuta utilizzando un motore a 1600 giri al minuto max.

$$N = mg = 2kg \cdot 9,81 \, ms^2 = 19,62N$$

Dalla tabella 9 si ricava:

μs: 0,15 μk: 0.06

Fas: μ s N = 0,15 • 19,62 N = 2,94N Fak: μ k N + m a = 0,04 x 19,62 N +

 $2Kg \cdot 4m/s^2 = 8.8N$

Dalla tabella 9 si ricava il rendimento del sistema vite-madrevite:

4s: 0,39 4k: 0,47

$$Cm > \max(M) = \frac{p}{2\pi \cdot 1000} \max\left(\frac{Fa_5}{\eta_5}; \frac{Fa_8}{\eta_8}\right)$$

da cui:

$$Cm > 0.0013m \frac{8.8N}{0.47} > 2.4Ncm$$

Dalle relazioni precedenti la velocita' della madrevite vale: V = np/(60 • 1000)

Si osserva che la vite non puo' superare una velocita' ideale di 1100 giri al minuto pena il verificarsi del fenomeno di colpo di frusta pertanto si assumendo un coefficiente di sicurezza pari a 1,5 e si ottiene

nmax = 1100/1.5=733 giri al minuto

 $Vmax = 733rpm \cdot 8 \cdot 2/60000 = 0, Im/s$

Avendo cura che il motore non superi la velocita' di rotazione massima consentita dalla vite n < 733 rpm